
Neural Networks for Data Science Applications
Master’s Degree in Data Science

Lecture 6: Graph neural networks

Lecturer: S. Scardapane

Introduction

Use cases for graph neural networks

Graph neural networks

Graphs are ubiquitous in the real-world, and over the last years we have
seen a great increase in research and industrial interest into developing
neural networks designed for them.

Graphs share a number of characteristics with images (e.g., each node has
neighbours), leading to some extensions of convolutional layers, but they
also have several peculiar characteristics requiring careful solutions.

2

Example #1: Fake news on social networks

Monti, F., Frasca, F., Eynard, D., Mannion, D. and Bronstein, M.M., 2019. Fake news detection on social media
using geometric deep learning. arXiv preprint arXiv:1902.06673.

3

Example #2: Traffic road prediction

Figure 1: Traffic prediction with advanced Graph Neural Networks (DeepMind blog).

4

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Example #3: Recommender systems

Tran, D.H., et al., 2021. HeteGraph: graph learning in recommender systems via graph convolutional networks.
Neural Computing and Applications, pp.1-17. 5

Example #4: Knowledge graphs

6

Example #5: Drug interaction

Zitnik, M., Agrawal, M. and Leskovec, J., 2018. Modeling polypharmacy side effects with graph convolutional
networks. Bioinformatics, 34(13), pp.i457-i466.

7

Introduction

Basic definitions

Definition of a graph

A graph is a pair G = (V , E), where V = {1, . . . ,n} is a set of n vertices
(nodes), and E = {(i, j) | i, j ∈ V} is a set of edges between them.

Alternatively, we can define an adjacency matrix A
(n,n)

where:

Aij =

Wij if (i, j) ∈ E
0 otherwise

.

If A> = A, we say the graph is undirected. Note that we allow for a generic
weight Wij between two nodes, not necessarily 1.

8

Examples of (binary) adjacency matrix

Figure 2: Examples of adjacency matrices with 0/1 values (reproduced from
Wolfram MathWorld).

9

https://mathworld.wolfram.com/AdjacencyMatrix.html

Neighbours and degrees

The neighborhoodNi of a node i is defined as the set of nodes sharing
an edge with the node:

Ni = {j | (i, j) ∈ E} .

The size |Ni| of the neighborhood is called the degree of the node. The
degree matrix D

(n,n)
is a diagonal matrix containing the degrees:

[D]i,i =
∑
j

Aij .

10

Learning problems on graphs

Node
classification

Edge
classification

Link
prediction

Graph
classification,
regression, ...

Figure 3: Several learning problems can be defined on a graph, depending on the
entity of interest.

11

Features on a graph

Depending on the application, we can have node features, edge features,
or graph features.

In the simplest case, we associate to each node i a vector xi
(d)
of features,

from which we can build a matrix X
(n,d)

.

More in general, we might have edge features eij or graph features g (which
we do not consider in this lecture).

12

Graph layers

Properties of a graph layer

Building a layer for graphs

Figure 4: We want to build a neural network layer for graphs, i.e., a differentiable,
composable, trainable operation for processing graphs.

13

Images and graphs

Like images, graphs have a notion of locality, embedded in the neighbour
set Ni.

Unlike images, however, two different nodes can have a different number
of neighbours (a different degree).

In addition, we do not have any precise ordering over the neighbours, i.e.,
there is no ‘upper left’ node (a graph is not embedded in a metric space).

14

Locality in graph layers

We consider graph layers of the form f (X,A) = (H,A), acting on the node
features, but keeping the connectivity the same. For simplicity, we can write
H = f (X,A), omitting the second output.

A graph layer is local if [H]i only depends on Ni.

Modifying the connectivity (e.g., pooling) is much harder than for images,
and still an open problem in the research.

Grattarola, D., Zambon, D., Bianchi, F.M. and Alippi, C., 2021. Understanding Pooling in Graph Neural Networks.
arXiv preprint arXiv:2110.05292.

15

Permutation matrices

Consider the 3× 3 matrix defined as:

P =

1 0 0
0 0 1
0 1 0

 .

It is easy to check that:

P

x1x2
x3

 =

x1x3
x2

 .

These are called permutation matrices.

16

Permutation equivariance

If we reorder the nodes in the graph by a permutation matrix P, the effect
on the different matrices is:

X′ = PX , A′ = PAP> . (1)

A graph layer f (X,A) is permutation equivariant if:

f (X′,A′) = P · f (X,A) . (2)

If the property is not respected, then the predictions in the layer are de-
pendent on the specific ordering we imposed on the nodes.

17

Graph layers

Graph convolutional layers

A convolution-like operation for graphs

A graph convolutional (GC) layer is defined as:

[H]i = φ

∑
j∈Ni

AijW>xj

 ,

which can be written compactly as:

H = φ (AXW) .

The graph is local (in the sense defined above) and permutation equivariant.

18

Expanding on the GC layer

The GC layer can be understood as a sequence of three operations:

1. A local node-wise operation x̂i = W>xi.
2. An aggregation with respect to the neighborhood. This is called the
message-passing phase.

3. A standard non-linearity.

In an image convolution, points (1)-(2) are combined in the filtering opera-
tion, because each pixel has a fixed neighborhood. Here, this is not possi-
ble because we cannot easily initialize trainable parameters to weight the
neighborhood.

19

Normalized propagation matrices

The GC layer remains valid if we replace the adjacency matrix with another
matrix having the same sparsity pattern (i.e., 0 for pairs of nodes not con-
nected in the graph).

I Adjacency matrix with self-loops: A+ I.
I Normalized adjacency matrix (with or without self-loops): D−1/2AD−1/2.

Some of these matrices can have better properties when training.

Kipf, T.N. and Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.

20

Visualization of the graph convolution

Pixel/Node updated

Convolution

Graph Convolution

Figure 5: Visualization of convolutions on images and graphs (taken from
https://spindro.github.io/post/gnn/).

21

https://spindro.github.io/post/gnn/

Graph layers

Stacking graph layers

Building a graph neural network

The GC layer is easily composable into amulti-layered architecture, e.g., with
two layers:

f (X,A) = φ (Aφ (AXW) Z) .

Similarly to a CNN, the receptive field for a node increases with the number
of layers. For example, the output for node i for the network above depends
on its neighbours and their neighbours.

Stacking GC layers gives rise to a graph convolutional network (GCN).

22

Visualizing a two-layer GCN

1° GC

2° GC

Direct update

Indirect update

Figure 6: Visual example of a two-layered GCN (taken from
https://spindro.github.io/post/gnn/).

23

https://spindro.github.io/post/gnn/

Polynomial GCNs

We can also increase the receptive field of a single GC layer (similar to in-
creasing the size of a kernel in a CNN).

Denoting by N 2
i the set of neighbours at distance 2 from node i, define a

new order-2 layer as:

f (X,A) = φ(XW+

Order 1︷︸︸︷
AXV + A2XZ︸︷︷︸

Order 2

) , (3)

where we have also separated the contribution of each node as XW.

Defferrard, M., Bresson, X. and Vandergheynst, P., 2016. Convolutional neural networks on graphs with fast
localized spectral filtering. Advances in Neural Information Processing Systems, 29, pp.3844-3852.

24

Task #1: Node classification

Suppose a subset T ⊂ N of nodes has a known class y (e.g., fake or certified
users in a social network).

We can use a GCN to classify all the nodes of the graph simultaneously:

Ŷ
(n,c)

= softmax(Aφ (AXW) Z) .

We optimize the weights of the network with gradient descent:

W∗, Z∗ = argmin
1
|T |

∑
i∈T

cross-entropy(yi, [Ŷ]i) .

Kipf, T.N. and Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907. 25

Task #2: Edge classification

In edge classification, we observe instead a subset of links T ⊂ E with a
given class yij (e.g., rated products in a recommender graph).

We can obtain a prediction for an edge by combining the features of the
corresponding nodes:

ŷij = g (Hi,Hj) , (4)

where g is an additional block (e.g., a fully-connected layer with a softmax
applied on the concatenation of Hi and Hj). Training proceeds similarly:

W∗, Z∗ = argmin
1
|T |

∑
(i,j)∈T

cross-entropy(yij, ŷij) .

For binary classification, g(hi,hj) = h>i hj is also common. 26

Task #3: Graph classification

Finally, assume we have multiple graphs Gi, each with a target class yi (e.g.,
a property of a certain molecule). Given the output Hi = GCN(Xi,Ai) for the
ith graph, we can obtain an embedding for the entire graph by performing
a global pooling operation:

hi =
1
n
∑
j

[Hi]j .

Mini-batching in this case is also easier, as shown next.

27

Batching multiple graphs

Figure 7: Batching multiple graphs in a single GCN call (taken from
https://github.com/tkipf/gcn).

28

https://github.com/tkipf/gcn

Graph layers

Graph attention networks

Anisotropic graph neural networks

The GCN treats the weights of the message-passing operation as fixed, de-
pending only on the adjacency matrix or some scaled version of it.

We now show an important class of GNNs allowing for learnable message-
passing coefficients, the graph attention network (GAT). This is an example
of anisotropic GNN.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. and Bengio, Y., 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903.

29

Generalizing the message-passing operation

Let us consider a more general form of a message-passing neural network:

[H]i = φ

∑
j∈Ni

η(xi, xj)g(xj)

 , (5)

where we recover the GC layer with η(xi, xj) = Aij and g(x) = W>x. Basically,
we are decomposing the layer as building a message for each neighbour,
then aggregating the messages by message weighting and summation.

30

Generalizing the message-passing operation (2)

The previous formulation leads to several interesting extensions, e.g.:

1. If we have edge features we can add them to the message weighting
function as η(xi, xj, eij), e.g., through concatenation.

2. If each node has a time-series instead of a vector (e.g., a grid of
energy producers) we can replace the two functions with proper
1D-CNN models (or similar networks).

31

The graph attention layer

In a GAT layer, we first learn a set of unnormalized values aij, one for each
edge, called the attention scores:

aij = a>LeakyReLU(V [xi ‖ xj]) . (6)

We then normalize the attention scores for every node to avoid instabilities:

aij = softmax(ai0, . . . ,aiN) .

g(xj) remains the same as the standard GCN.

This is the so-called GATv2, see: Brody, S., Alon, U. and Yahav, E., 2021. How Attentive are Graph Attention
Networks?. arXiv preprint arXiv:2105.14491.

32

Advanced concepts

Point cloud networks and equivariant
message passing

Point cloud networks

An important subset of graphs is given by point clouds: a point cloud is a
collection of points which, differently from standard graphs, have an asso-
ciated coordinate vector ci (e.g., the 3D position).

Qi, C.R., et al., 2017. Pointnet: Deep learning on point sets for 3d classification and segmentation. In IEEE CVPR
(pp. 652-660).

33

Graphs with coordinates

In a more general setup, we have a coordinate matrix C and a feature matrix
X (e.g., an energy grid where every station has a position and a time series).

We want the graph layer f (X,C,A) to be equivariant to permutations, but at
the same time it must be equivariant to translations and rotations on the
coordinates:

f (X,CQ+ s,A) = Qf (X,C,A) + s , (7)

where Q is a generic rotation matrix and s a shift.

34

Rotation equivariance

Satorras, V.G., Hoogeboom, E. and Welling, M., 2021. E(n) equivariant graph neural networks. In ICML (pp. 9323-
9332). PMLR. 35

E(n) equivariant GNN

How can we incorporate all of this in the previous framework? The key
insight is that rotations and translations do not modify the distance ‖Ci −
Cj‖2. Thus, we modify our message passing as follows:

[X]i = φ

∑
j∈Ni

η(xi, xj, ‖Ci − Cj‖2)g(xj)︸ ︷︷ ︸
mij

 , (8)

We can also let the network adapt the coordinates layer by layer as:

Ci = Ci +
∑
j∈Ni

(Ci − Cj)φc(mij) . (9)

Satorras, V.G., Hoogeboom, E. and Welling, M., 2021. E(n) equivariant graph neural networks. In ICML (pp. 9323-
9332). PMLR. 36

Advanced concepts

Latent graph imputation

Differentiable graph module

Kazi, A., Cosmo, L., Ahmadi, S.A., Navab, N. and Bronstein, M., 2022. Differentiable graph module (dgm) for graph
convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence.

37

Software libraries

Multiple libraries build on standard deep learning frameworks to provide
GNN functionalities:

I Deep Graph Library (framework agnostic, very scalable):
https://www.dgl.ai/.

I PyTorch Geometric (great for reproducing results):
https://github.com/pyg-team/pytorch_geometric.

I Spektral (TensorFlow, smaller than the other two):
https://graphneural.network/.

I TensorFlow Graph Neural Networks:
https://github.com/tensorflow/gnn (early release, poor
documentation).

38

https://www.dgl.ai/
https://github.com/pyg-team/pytorch_geometric
https://graphneural.network/
https://github.com/tensorflow/gnn

Further reading

I Graph Representation Learning Book:
https://www.cs.mcgill.ca/~wlh/grl_book/.

I A paper that describes a more general GNN with node, edge, and
graph features: Relational inductive biases, deep learning, and graph
networks.

I Introductory blog post on Distill:
https://distill.pub/2021/gnn-intro/.

39

https://www.cs.mcgill.ca/~wlh/grl_book/
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1806.01261
https://distill.pub/2021/gnn-intro/

	1
	Introduction
	Use cases for graph neural networks
	Basic definitions

	Graph layers
	Properties of a graph layer
	Graph convolutional layers
	Stacking graph layers
	Graph attention networks

	Advanced concepts
	Point cloud networks and equivariant message passing
	Latent graph imputation

