
Neural Networks for Data Science Applications
Master’s Degree in Data Science

Lecture 10: Recurrent models

Lecturer: S. Scardapane



Linearized transformer

The model



Convolutions and attention

Up to now, we introduced two classes of models for dealing with sequences:

1. Convolutional models are parameter-efficient, they have linear
complexity in the sequence length, but they are less efficient at
handling long-range dependencies.

2. Transformers can handle long-range dependencies efficiently, but
they require the addition of positional embeddings and they have a
quadratic complexity in the sequence length. For autoregressive
generation with a KV cache, the size of the cache grows linearly in the
sequence length.

We would like an operator which combines the benefits of the two ap-
proaches - recently, recurrent networks (RNNs) have gained interest.

2



Linearized attention

We begin with a generalization of the attention layer (linearized attention
layer) that can be written in a recurrent form.

Consider again the SA layer with a generic scalar-valued attention function
α(·, ·) instead of the dot product:

hi =
∑n

j=1 α (qi, kj) vj∑n
j=1 α (qi, kj)

(1)

where for the standard SA, α(x, y) = exp(x>y).

Katharopoulos, A., Vyas, A., Pappas, N. and Fleuret, F., 2020. Transformers are RNNs: Fast autoregressive trans-
formers with linear attention. In ICML (pp. 5156-5165). PMLR.

3



Kernel functions

Any non-negative α is a valid similarity function. In machine learning, these
are known as kernel functions. Most kernel functions (e.g., polynomial,
Gaussian) can be written as a generalized dot product:

α(x, y) = φ(x)>φ(y) (2)

for some function φ : Rc → Re performing a feature expansion. A linearized
attention layer is obtained by using (2) in the attention layer.

4



Linearized attention layer

Working out the calculation (see details in the book and in the paper, the
key point is that φ(qi) does not depend on j):

hi =
φ(qi)>

∑n
j=1 φ(kj)v>j

φ(qi)>
∑n

j=1 φ(kj)
(3)

This is the linearized attention layer. By itself, computing (3) for all tokens
has complexity O(n(e2 + ev)), which is linear in the sequence length and
advantageous whenever n < e2. However, the usefulness of the layer be-
comes apparent if we focus on a causal variant.

5



Linearized transformer

A recurrent formulation



Causal variant

A causal variant is obtained by masking all elements such that j > i:

hi =
φ(qi)>

∑i
j=1 φ(kj)v>j

φ(qi)>
∑i

j=1 φ(kj)
=

φ(qi)>Si
φ(qi)>zi

(4)

Attention memory Si

Normalizer memory zi

6



Recurrent formulation

We can rewrite the two memories recursively as:

Si = Si−1 + φ(ki)v>i (5)
zi = zi−1 + φ(ki) (6)

where the base case of the recurrence is given by their initialization:

S0 = 0 (7)
z0 = 0 (8)

These four equations together with the (4) provide the complete recurrent
variant of the layer.

7



Properties of the layer

I Similarly to the implementation of batch normalization, this layer is
stateful: Si and zi change for every token processed, and they are
reinitialized at the end of the sequence.

I The update step (5)-(6) has constant-time complexity, similarly to a
convolutional layer.

I Can we implement this layer in parallel?

We call any layer of this form a recurrent layer.

8



Recurrent layers

General formulation



General properties

To provide a general definition, let us abstract away some key properties:

1. First, we need a fixed-size state which encodes all useful information
up to the current element in the sequence. We denote it generically
as si, and from now on we assume it is a vector.

2. Second, we need a transition function (recurrence) that updates the
state vector based on the previous value and the value of the current
token, which we denote as f (si−1, xi).

3. Third, we need a readout function to compute the output for the i-th
element of the sequence. We denote it as g(si, xi).

9



Recurrent layers

R
ecurrence

R
ecurrence

Readout

Previous token

Current token

Memory (state)

Figure 1: Overview of a recurrent layer: past tokens are shown in gray, current
input token in blue, the memory state in yellow.

10



General formulation

Based on the previous definition, given a sequence of tokens x1, x2, . . ., a
recurrent layer can be written as:

si = f (si−1, xi) (9)
hi = g(si, xi) (10)

where s0 = 0. The size of the state vector, e, and the size of the output vector
hi ∼ (o) are hyper-parameters. We call f the state transition function and
g the readout function.

Recurrent neural networks (RNNs) are built by stacking multiple layers of
this form.

11



Additional comments

I RNNs are fundamentally input-driven dynamical systems.
I They are causal layers by definition.
I In control engineering, they are known as state-space models.

For tasks in which causality is unnecessary, bidirectional layers can be de-
fined. In a bidirectional layer we initialize two recurrent layers (with sep-
arate parameters), one of which processes the sequence left-to-right, and
the second one right-to-left. Their output states are then concatenated to
provide the final output.

12



Recurrent layers

Vanilla recurrent layers



Basic recurrent layer

Historically, recurrent layers were instantiated by considering two fully-connected
layers as transition and readout functions:

f (si−1, xi) = φ(Asi−1 + Bxi) (11)
g(si, xi) = Csi + Dxi (12)

The layer has four trainable matrices A ∼ (e, e), B ∼ (e, c), C ∼ (o, e), and
D ∼ (o, c), where c is the input dimensionality (the size of each token). This
is known generally as the recurrent layer, or vanilla recurrent layer, or Elman
recurrent network.

13



Issues

This family of recurrent layers has multiple issues, e.g.:

I The computation cannot be paralellized and it must be executed with
a for-loop operation. Even on recent GPUs with customized kernels,
this is computationally expensive compared to other types of layers.

I The gradient computation requires to back-propagate through all
transition functions (backpropagation through time, BPTT), which
might create instabilities due to the non-linearity (see the full
computation in the book).

As a reason, they fell out of favour compared to alternative attention-based
models.

14



Recurrent layers

R
ecurrence

R
ecurrence

R
ecurrence

Readout

Figure 2: Backward pass for a recurrent layer: the adjoint values have to be
propagated through all the transition steps. Each state then contributes a single
term to the full gradient of the parameters.

15



Recurrent layers

Gated recurrent layers



Gated recurrent layers

One issue of RNNs is that the entire state gets overwritten at each transition.
However, for many sequences, only a few elements of these transitions are
important and we may prefer to sparsify the transition step. This can be
controlled by the introduction of so-called gate elements.

We consider the simplest form of gated RNN, called light gated recurrent
unit (Li-GRU), having a single gate.

Ravanelli, M., Brakel, P., Omologo, M. and Bengio, Y., 2018. Light gated recurrent units for speech recognition.
IEEE Transactions on Emerging Topics in Computational Intelligence, 2(2), pp. 92-102.

16



What is a gate?

A gating function is a layer that outputs values in the range [0, 1] that can
be used to “mask” the input. As an example, a gate over the state can be
obtained by a fully-connected layer with a sigmoid activation function:

γ(si−1, xi) = σ (Vsi−1 + Uxi)

If γi ≈ 0, the i-th feature of the state should be kept untouched, while if
γ1 ≈ 1, we should propagate its updated value as output.

17



The Li-GRU model

We can obtain a gated layer by combining a gate with the transition function:

f (si−1, xi) =
New values︷ ︸︸ ︷

γ(si−1, xi)� (Asi−1 + Bxi)
+ (1− γ(si−1, xi))� si−1︸ ︷︷ ︸

Old values

This can be seen as a soft (differentiable) approximation to a “real” gate
having only binary values, or as a convex combination of the original layer
and a skip connection.

18



Other gated models

Other famousmodels in this category include the gated recurrent unit (GRU)
with two gates and the long-short term memory (LSTM) network with three
gates.

LSTMs were the first gated variant to be introduced in the literature, and
for a long time they have been the most successful deep architecture for
processing sequences. Research on LSTM models is still very active.

Beck, M., Pöppel, K., Spanring, M., Auer, A., Prudnikova, O., Kopp, M., Klambauer, G., Brandstetter, J. and Hochreiter,
S., 2024. xLSTM: Extended Long Short-Term Memory. arXiv preprint arXiv:2405.04517.

19



Structured SSMs

A linear transition function



Structured SSMs

Suppose we remove the nonlinearity in the transition function:

f (si−1, xi) = Asi−1 + Bxi (13)
g(si, xi) = Csi + Dxi (14)

We call this a state space model (improperly, as every RNN is an SSM) or
better a structured SSM, as we will see that the transition matrix needs to
be properly constrained to make this work. An SSM layer is “less expressive”
than a vanilla layer, but this can be recovered by adding activation functions
after the output, or by interleaving these layers with token-wise MLPs.

Orvieto, A., De, S., Gulcehre, C., Pascanu, R. and Smith, S.L., 2023. On the universality of linear recurrences
followed by nonlinear projections. arXiv preprint arXiv:2307.11888.

20



An historical note

Interest in structured SSMs models started in 2020 with the introduction of
the HiPPO (High-Order Polynomial Projection Operator) layer, a theoretical
construction for A to compress one-dimensional input sequences according
to some pre-defined reconstruction criterion.

A family of neural networks built by a stack of SSM layers based on the
HiPPO theory followed, leading to the Structured State Space for Sequence
Modeling (S4) layer in 2021 and the simplified S4 model (S5) in 2022.

We focus our analysis on a simplified variant known as the linear recurrent
unit (LRU).

Orvieto, A., et al., 2023. Resurrecting recurrent neural networks for long sequences. In ICML (pp. 26670-26698).
PMLR.

21



Convolutional view

Because of linearity, the recurrence has a closed form solution:

si =
i∑
j=1

Ai−jBxj (15)

We can exploit this equation in two ways: as a convolution, or as a par-
allel scan. First, let us aggregate all coefficients with respect to the input
sequence into a rank-3 tensor:

K = stack
(
An−1B,An−2B, . . . ,AB,B

)
22



Convolutional view (2)

We can compute all outputs via a single 1D convolution of filter size equal
to the length of the sequence (a long convolution) between the input se-
quence stacked into a single matrix X ∼ (n, c) and K :

S = Conv1D(X, K)

Hence, the SSM layer can be interpreted as a convolution. This was exploited
in the original structured SSM models by working in a frequency domain
where convolution is a multiplication.

Gu, A., et al., 2021. Combining recurrent, convolutional, and continuous-time models with linear state space
layers. Advances in neural information processing systems, 34, pp. 572-585.

23



Structured SSMs

Associative scans



An interlude: associative scans

Consider a sequence of elements (x1, x2, . . . , xn), and a binary associative
operation ?. We want to compute all partial applications:

x1, x1 ? x2, x1 ? x2 ? x3, . . . , x1 ? x2 ? · · · ? xn

This can be done trivially by an iterative algorithm which computes the ele-
ments one-by-one, adding one element at every iteration. However, we can
devise an efficient parallel algorithm by exploiting the associativity of the
operator.

24



Visualization

The key intuition is that multiple pairs of elements can be computed in
parallel and then aggregated recursively.

Figure 3: Parallel scan on a sequence of six elements: circles of the same color
can be computed in parallel; dashed circles are the outputs of the parallel scan.

25



A worked-out example

Consider a sequence of 6 elements x1, x2, x3, x4, x5, x6. We will denote by x̂i
the i-th prefix we want to compute. We first aggregate pairs of adjacent
values as:

s1 = x1 ? x2 → x̂2
s2 = x3 ? x4
s3 = x5 ? x6

where we use arrows to denote outputs of the algorithm.

26



A worked-out example (2)

We now perform a second level of aggregations:

s1 ? x3 → x̂3
o1 = s1 ? s2 → x̂4

And finally:

o1 ? x5 → x̂5
o1 ? s3 → x̂6

27



A worked-out example

While this looks strange (we made 7 steps instead of 5), the three blocks of
computations can be trivially parallelized if we have access to 3 separate
threads. By organizing the set of computations in a balanced fashion, we
can compute the parallel scan inO(T log n), where T is the cost of the binary
operator ?.

An example of implementation is the associative scan function in JAX.

https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.associative_scan.html

28

https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.associative_scan.html


SSMs and parallel scans

The transition function in a linear SSM is an example of an all-prefix-sums
problem. We define the elements of our sequence as pairs xi = (A,Bxi), and
the binary operator as:

(Z, z) ? (V, v) = (VZ,Vz+ v)

The prefixes of ? are then given by:

x1 ? x2 ? . . . ? xi = (Ai, si)

Smith, J.T., Warrington, A. and Linderman, S.W., 2022. Simplified state space layers for sequencemodeling. arXiv
preprint arXiv:2208.04933.

29



SSMs and parallel scans

Hence, running a parallel scan gives us the powers of A as the first elements
of the output, and all the states of the layer as the second element of the
output. The complexity of this operation is upper bounded by the complex-
ity of Ai−1A, which scales as O(n3). To make the entire procedure viable, we
need to constrain A so that its powers can be computed more efficiently.

30



Structured SSMs

Diagonal SSMs



Diagonal SSMs

A common strategy to make the previous ideas feasible is to work with di-
agonal transition matrices. In this case, powers of A can be computed easily
by taking powers of the diagonal entries in linear time.

In particular, a square matrix A is said to be diagonalizable if we can find
another square (invertible) matrix P and a diagonal matrix Λ such that:

A = PΛP−1 (16)

If a matrix can be diagonalized, its powers can be computed efficiently as:

Ai = PΛiP−1

31



Diagonal SSMs

Suppose that the transition matrix is diagonalizable. We can re-write the
SSM in an equivalent form having a diagonal transition matrix. We first
substitute the diagonalization and multiply on both sides by P−1:

P−1si =
i∑
j=1

Λi−j PB xj

New state vector s̄i New input-state matrix B̄

Then we rewrite the readout function in terms of the new variable s̄:

yi = CP s̄i + Dxi

New readout matrix C̄

32



Diagonal SSMs

Putting everything together:

s̄i = Λs̄i−1 + B̄xi (17)
yi = C̄s̄i + Dxi (18)

Hence, whenever a diagonalization of A exists, we can always rewrite the
SSM into an equivalent form having a diagonal transition matrix. In this
case, we can directly train the four matrices Λ = diag(λ), λ ∼ (e), B̄ ∼ (e, c),
C̄ ∼ (o, e) and D ∼ (o, c), with the diagonal matrix being parameterized by
a single vector of dimension e.

33



Matrices and diagonalization

Not all matrices can be diagonalized. However, an approximate diagonaliza-
tion can always be found if one allows for matrices P and Λ to have complex-
valued entries. Care must be taken to parameterize the values over the di-
agonal so that the eigenvalues of the transition matrix stay < 1 in absolute
value, to avoid diverging dynamics. We do not cover these topics for brevity.

Orvieto, A., et al., 2023. Resurrecting recurrent neural networks for long sequences. In ICML (pp. 26670-26698).
PMLR.

34



Structured SSMs

Selective SSMs



Linear attention layers are SSMs

Despite their differences, all themodels we saw are connected. For example,
consider a linearized attention layer where we ignore the denominator:

Si = Si−1 + φ(ki)v>i (19)
hi = φ(qi)>Si (20)

We now see that this has the form of a SSM layer, except that some matrices
(e.g., C = φ(qi)>) are not fixed but they depend on the specific input token.
This has inspired another class of SSM layers whose matrices are not con-
strained to be time-invariant, which have been called selective SSMs.

35



The Mamba block

We consider the Mamba layer, which introduced the idea of selective SSMs.
The core idea is to make some of the matrices of the SSM token-dependent:

si = A(xi)si−1 + B(xi)xi (21)
hi = C(xi)si + Dxi (22)

where A(•), B(•), and C(•) are linear projections of their input tokens. To
make this feasible, the layer is applied to each channel of the input in-
dependently, and the transition matrix is selected as diagonal, so that all
matrices of the SSM can be represented with a single vector of values.

Gu, A. and Dao, T., 2023. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint
arXiv:2312.00752.

36



Additional considerations

This layer looses a simple parallel scan implementation and requires a cus-
tomized hardware-aware implementation.

To make the overall architecture simpler, Mamba avoids alternating MLPs
and SSMs, in favour of a gated archicture where an MLP is used to weight the
outputs from the SSM. It also combines the model with the idea of multiple
projections from transformers, and an additional depthwise convolution is
added for improved flexibility.

37



Visualization of the Mamba layer

Linear

Convolution

Mamba SSM

Linear

Linear

Figure 4: Mamba block (residual connections around the block and normalization
are not shown). σ is the sigmoid function. 38



Further readings

I Chapter 13 of the book.

39


	1
	Linearized transformer
	The model
	A recurrent formulation

	Recurrent layers
	General formulation
	Vanilla recurrent layers
	Gated recurrent layers

	Structured SSMs
	A linear transition function
	Associative scans
	Diagonal SSMs
	Selective SSMs



