
Neural Networks for Data Science Applications
Master’s Degree in Data Science

Lecture 4: Fully-connected neural networks

Lecturer: S. Scardapane

Feedforward neural networks

Limitations of linear models

In what is a linear model limited?

To understand the limitations of a linear model f (x), consider an input x̂
equal to x but for a single feature x̂i = 2xi (e.g., a client with double income).

The output on the two inputs is related by:

f (x′) = f (x) + wjxj

Original output

Change induced by x′j = 2xj

Effects are linearly super-imposed: it is impossible to model some form
of interaction between two features (e.g., ‘a client with 10k income is not
trustworthy, unless he is very young’).

2

Learning intermediate computations

h1

h2

�

x1

x2

?

g(x)

Figure 1: How can we define intermediate computations?

3

Feedforward neural networks

Fully-connected layers

The incorrect way: layering fully-linear models

Can we layer two linear models?

h = Wx , (1)
f (h) = w>h . (2)

We could, but this is equivalent to a single linear model:

f (x) =
(
w>W

)
x . (3)

We need some way of separating the two linear operations.

4

Fully-connected neural networks

We can avoid the ‘collapse’ of the two linear models by interleaving them
with some element-wise nonlinearity φ:

h = φ(Wx) , (4)
f (h) = w>h . (5)

This is the prototype of a fully-connected (FC) neural network, sometimes
known as a multilayer perceptron (MLP).

5

Visualization of a feedforward NN

�()ℎ1

�

x1

x2

h1

h2 �()ℎ2

Figure 2: Visualization of a simple feedforward NN. In general, we will never show
the nonlinearities explicitly in the graphs from now on.

6

Feedforward neural networks

Training and complexity considerations

Training the network

Training of the network can be proceed similarly to a linear model. For
example, given a dataset {xi, yi}ni=1 for regression, we can minimize the LS
loss (note: always remember we are ignoring the biases in the notation):

W∗,w∗ = argmin
1
n

n∑
i=1

(
yi − f (xi)

)2
. (6)

For classification, we can wrap the output in a sigmoid andminimize a cross-
entropy loss.

7

Approximation results

Theorem 1.1: Cybenko (1989) - Hornik (1991) - Leshno (1993)

Let h(x) be a continuous function defined on a compact subset S ⊂ Rd

and ε > 0. For a sufficiently large p, there exists an f (x) as in Eq. (6)-(7)
with p hidden units such that:

|h(x)− f (x)| < ε, ∀x ∈ S . (7)

This holds for any non-constant, bounded, continuous φ.

This is a universal approximation theorem. It does not tell us about the
feasibility for a given problem (e.g., how large should p be?).

8

Computational complexity

Because the NN can be highly non-convex, its optimization problem has
multiple local minimum and/or saddle points.

In fact, training a neural network optimally is NP-hard, even for very simple
architectures, and highly dependent on a good initialization.

Finding the global optimum requires running GD from almost everywhere:
this is similar to an exhaustive search.

Blum, A. and Rivest, R.L., 1989. Training a 3-node neural network is NP-complete. In Advances in neural infor-
mation processing systems (pp. 494-501).

9

Adding hidden layers

Nothing prevents us from adding additional ‘hidden’ (intermediate) layers:

f (x) = wT ·
h2︷ ︸︸ ︷

φ
(
Z · φ (W · x)︸ ︷︷ ︸

h1

+c
)

(8)

hL1

�

x1

x2

h11

h12 hL2

...

...

10

Parameters and hyper-parameters

Differently from a linear model, a NN has several design choices that we
have freedom on:

I The nonlinearity (sometimes called the activation function);
I The dimensionality of the hidden layers;
I Several others that we will introduce in the next lectures.

We call these hyper-parameters to differentiate them fromparameters (weights)
to be trained via GD.

Choosing the correct set of hyper-parameters is called the model selection
/ hyper-parameter optimization problem.

11

Playing with a neural network

Figure 3: https://playground.tensorflow.org/.

12

https://playground.tensorflow.org/

Selecting the activation function

Apart from the sigmoid, what kind of non-linearities can we use?

1. Hyperbolic tangent (tanh) tanh(s) = 2σ(s)− 1, which is just a sigmoid
scaled in [−1,+1].

2. Polynomials φ(s) = sp are a very bad idea unless a lot of care is taken
due to numerical instabilities.

3. We will see that the rectified linear unit (ReLU) ReLU(s) = max(0, s) is
a good default choice. Note that, if we consider the bias of the
previous layer part of the activation function, ReLU(s) = max(0, s+ b)
is a threshold function with a trainable threshold.

13

Additional interesting facts

We call the size of the hidden layers the width of the network, and the
number of layers its depth. Narrow networks with potentially infinite layers
are also universal approximators.1

UA theorems are not constructive; there exist families of functions that are
efficiently learnable with deep networks as opposed to shallow networks,
but it is unclear whether this also holds in practice.2

1Kidger, P. and Lyons, T., 2020. Universal approximation with deep narrow networks. In COLT (pp. 2306-2327).
PMLR.
2Nye, M. and Saxe, A., 2018. Are efficient deep representations learnable?. arXiv preprint arXiv:1807.06399.

14

Additional interesting facts (part 2)

The distribution of NNs with infinite width converges to a mathematical ob-
ject known as a Gaussian Process (GP).

In fact, under a first-order linearization, the predictions of any NN f (x) can
be described by:

(yt − y) =

I− η [∂f (x)]> ∂f (x)︸ ︷︷ ︸
K∈Rn×n

(
yt−1 − y

)
. (9)

The elements [K]i,j are called the neural tangent kernel (NTK), a fundamental
recent tool in the analysis of deep neural networks.

Jacot, A., Gabriel, F. and Hongler, C., 2018. Neural tangent kernel: Convergence and generalization in neural
networks. NeurIPS, 31. 15

Training of the networks

Stochastic optimization

Handling large datasets

Consider the steps needed for a single iteration of GD:

1. Computing the output of the NN f (x) on all examples;
2. Computing the gradient of the cost function with respect to the
weights.

Both these operations scale linearly in the number of examples, which is
unfeasible when we have 105 or even more examples.

In practice, to train NNs we use stochastic versions of GD, that approximate
the real gradient from smaller amounts of data.

16

Stochastic GD

The key observation is that the training problem in NNs is an expectation
with respect to all data (θ is the set of weights):

J(θ) = 1
n

n∑
i=1

(
yi − f (xi)

)2
. (10)

To limit the complexity, we can use only amini-batch B of M examples from
the full dataset:

J(θ) ≈ J̃(θ) = 1
M

∑
i∈B

(
yi − f (xi)

)2
. (11)

We can use the gradient from the approximated function to perform an
iteration of GD.

17

Characteristics of stochastic GD

The previous algorithm is called stochastic gradient descent (SGD).

The computational complexity of an iteration of SGD is fixed with respect to
M (the batch size) and does not depend on the size of the dataset.

Because we assumed that samples are i.i.d., we can prove SGD also con-
verges to a stationary point in average, albeit with noisy steps.

18

Visualization of the loss

Figure 4: SGD will converge on average to a stationary point, although in an
apparently noisy fashion (Source: EngMRK).

19

https://engmrk.com/mini-batch-gd/

Extracting batches from the data

Instead of randomly sampling batches from the training dataset at each
iteration, we generally apply the following procedure:

1. Shuffle the full dataset;
2. Split the dataset into blocks of M elements and process them
sequentially, batch-by-batch;

3. After the last block, return to point (1) and iterate.

A full pass over the dataset is called an epoch. This is efficient because the
majority of the time we deal with data stored contigously in memory. In
practice, even the shuffling operation can be approximated.

20

Extracting batches from the data

1 2 b

Epoch

Shuffle

Dataset

SGD
Step 1

SGD
Step 2

SGD
Step b

Repeat

Shuffled dataset

Build mini-batches

Figure 5: Dividing the optimization process into epochs is also helpful to define
metrics and stopping criteria. 21

Paralellizing GD optimization

Dataset
(main memory)

GPU 2

GPU 1

Compute
gradient

Compute
gradient

Aggregate gradients
and broadcast back the

parameters

Figure 6: A simple form of distributed stochastic optimization: we process one
mini-batch per available machine or GPU (by replicating the weights on each of
them) and sum or average the corresponding gradients before broadcasting back
the result (which is valid due to the linearity of the gradient operation). This
requires a synchronization mechanism across the machines or the GPUs.

22

Choosing the batch size

Running SGD requires selecting the size of the mini-batch, which is an ad-
ditional hyper-parameter:

I Smaller mini-batches are faster, but the network might require more
iterations to converge because the gradient is noisier.

I Larger mini-batches provide a more reliable estimation of the
gradient, but are slower.

In general, it is typical to choose power-of-two sizes (32, 64, 128, ...) depend-
ing on the hardware configuration and the total memory available.

In the limit M = 1 we obtain an online (streaming) optimization.

23

Other topics

Design variants

Variants of the ReLU

1. LeakyReLU replaces the negative quadrant of ReLU with a small slope
(e.g., α = 0.01):

LeakyReLU(s) =

s if s > 0
αs otherwise

(12)

2. If you want a smoother version of the ReLU, you can use the
exponential linear unit (ELU):

ELU(s) =

s if s > 0
α(exp s− 1) otherwise

(13)

24

Variants of the ReLU (2)

Viewing the ReLU as a kind of gating function ReLU(s) = s1x≥0, we can obtain
smoother variants as:

φ(s) = sψ(s) , (14)

where:

I If ψ(s) is the standard Gaussian cumulative distribution function, we
obtain the Gaussian Exponential Linear Unit (GELU).

I If ψ(s) = σ(s) we obtain the Sigmoid linear unit (SiLU) or Swish.

25

Comparison of activation functions

−3 −2 −1 0 1 2 3

s

−2

−1

0

1

2

3

A
ct

iv
at

io
n

fu
n

ct
io

n
s

ReLU

LeakyReLU

ELU

GELU

SELU

SiLU

Figure 7: Common activation functions plotted side-by-side.

26

Trainable activation function

Activation functions can also have trainable parameters that vary for each
unit. For example, the LeakyReLU with trainable α becomes the parametric
ReLU (PReLU). Or, for a more convoluted example:

Trainable-Swish(s) = σ(as+ b)(cs+ d) , (15)

with 4 trainable parameters per unit. Variants of this have become popular
with the recent LLaMA class of models.

Shazeer, N., 2020. GLU variants improve transformer. arXiv preprint arXiv:2002.05202.

27

Non-parametric AFs

We can parametrize a generic trainable AF as a small (one hidden layer)
MLP:

φ(s) =
∑
i

αiψi(s) (16)

where ψ1, . . . , ψn are (typically fixed) basis functions. We can use splines,
kernels, radial-basis functions, etc. to obtain multiple variants. However, it
is generally difficult to find a good trade-off between number of parameters,
speed, and lack of overfitting.

Apicella, A., et al., 2021. A survey on modern trainable activation functions. Neural Networks, 138, pp. 14-32.

28

Multiplicative interactions

Not every layer fits into the framework of linear projections and element-
wise non-linearities. For example, the gated linear unit (GLU) is composed
of multiplicative (Hadamard) interactions between two blocks:

f (x) = σ (W1x)� (W2x) (17)

where W1 and W2 are trained. This has become extremely popular in recent
LLM models, such as the Llama family.

29

Kolmogorov-Arnold networks

Inverting the order of linear and non-linear operations, we can write a lin-
eary layer as:

hi =
∑
j

Wijφ(xj) (18)

If we parameterize the activation functions (e.g., the trainable Swish) we can
have different AFs for each (i, j) pair:

hi =
∑
j

Wijφij(xj) (19)

This has become popular under the name of Kolmogorov-Arnold networks
(KANs).

Liu, Z., et al., 2024. KAN: Kolmogorov-Arnold networks. arXiv preprint arXiv:2404.19756.
30

Reading material

I Chapter 5 from the book.

31

	1
	Feedforward neural networks
	Limitations of linear models
	Fully-connected layers
	Training and complexity considerations

	Training of the networks
	Stochastic optimization

	Other topics
	Design variants

