
Neural Networks for Data Science Applications
Master’s Degree in Data Science

Lecture 5: Automatic differentiation (forward-mode
and reverse-mode)

Lecturer: S. Scardapane

Automatic differentiation

Forward mode

Composition of parametric functions

Neural networks are compositions of blocks of the form h = f (x,w), where:

I x is the input (possibly the output of a former block);
I w is a vector of trainable parameters (e.g., all elements in W and b in a
fully-connected layer).

Assuming d, p, and o are the output shapes of x, w, and h, to each block we
can associate two Jacobians:

∂xf (x,w)
(o,d)

∂wf (x,w)
(o,p)

. (1)

2

Vectors and tensors

We consider vectors for notational simplicity, because in themulti-dimensional
case, Jacobians can have a lot of indexes:

1 x = tf.random.normal((3, 4))
2 w = tf.Variable(tf.random.normal((4, 5)))
3 with tf.GradientTape() as tape:
4 h = x @ w
5 tape.jacobian(h, w).shape # Print: TensorShape([3, 5, 4, 5])

Given a tensor x
(a,b,...)

, it is isomorphic (equivalent) to a vector x
(ab...)

. Because

of this, our formulation is actually quite generic.

3

Vectors and tensors (2)

The previous code, in fact, is equivalent to:

1 x = tf.random.normal((12,))
2 w = tf.Variable(tf.random.normal((20,)))
3 with tf.GradientTape() as tape:
4 h = tf.reshape(x, ((3, 4)) @ tf.reshape(w, (4, 5))
5 h = tf.reshape(h, (-1,))
6 tape.jacobian(h, w).shape # Print: TensorShape([15, 20])

(This is of course not something you should do in practice.)

4

Examples of primitives

I Fully-connected layers:

f (x, {W,b}) = Wx+ b . (2)

I Elementwise non-linearity (activation functions):

f (x, {}) = φ(x) . (3)

I Quite a few more to come...

5

A note on implementation

Our notation is inspired by functional frameworks such as Jax:

1 def f(W, x):
2 return jnp.tanh(jnp.dot(x, W))

In object-oriented frameworks (TensorFlow, PyTorch), blocks are instead in-
stances of classes, and parameters are specially-defined properties:

1 class F(Layer):
2 def __init__(self, d, o):
3 self.W = tf.Variable(tf.random.normal((d, o)))
4 def __call__(self, x):
5 return x @ self.W

6

Purification

Figure 1: We can move from an OOP implementation to a functional one by a
process called purification:
From PyTorch to JAX: towards neural net frameworks that purify stateful code.

7

https://sjmielke.com/jax-purify.htm

Composing blocks

We assume we have a variable number of blocks, but the last one is always
a sum (most of the time, to aggregate the per-batch losses):

h1 = f1(x,w1)
h2 = f2(h1,w2)

...
hl = fl(hl−1,wl)
y =

∑
hl

We want an efficient algorithm to compute the parameters’ gradients:

{∂wiy} i = 1, . . . , l . (4)
8

Chain rule for Jacobians

Remember the chain rule for Jacobians:

∂ [f ◦ g] = ∂f ◦ ∂g . (5)

We can interpret the chain rule as follows:

I if we have already computed g and its corresponding ∂g ...
I ... and we update our output as f ◦ g ...
I ... we need to update the corresponding Jacobian as ∂f ◦ ∂g.

This is the key behind forward-mode automatic differentiation (forward au-
todiff).

9

A practical example

Consider 3 layers as follows:

h1
(o1)

= f1(x
(d)
, w1
(p1)

)

h2
(o2)

= f2(h1
(o1)

, w2
(p2)

)

h3
(o3)

= f3(h2
(o2)

, w3
(p3)

)

y = 〈h3, 1〉 .

In forward-mode autodiff, we use the chain rule to update all gradients we
are interested into after every instruction.

10

Forward-mode autodiff (general)

More formally, for each layer in the network, forward-mode autodiff pro-
ceeds as follows:

1. Compute the new output hi = fi(hi−1,wi).
2. For wi, initialize the so-called tangent matrix:

Ŵi = ∂wihi .

Some layers might not have parameters, in which case skip this step.
3. For previous parameters, update their gradient using the chain rule:

Ŵj =
[
∂hi−1hi

]
· Ŵj , j < i .

11

Forward-mode autodiff (step 1)

We start by computing the output of the first layer, and the corresponding
gradient with respect to w1:

Original instruction

h1 = f1(x,w1)

Additional instructions

Ŵ1 = ∂w1h1

12

Forward-mode autodiff (step 2)

After our second operation, we need to update the gradient with respect to
w1, and initialize the one with respect to w2:

Original instruction

h2 = f2(h1,w2) .

Additional instructions

Ŵ1
(o2,p1)

=
[
∂h1h2
(o2,o1)

]
· Ŵ1
(o1,p1)

,

Ŵ2 = ∂w2h2 .

13

Forward-mode autodiff (step 3)

At this point, we keep iterating our procedure:

Original instruction

h3 = f3(h2,w3) .

Additional instructions

Ŵ1 =
[
∂h2h3

]
· Ŵ1 ,

Ŵ2 =
[
∂h2h3

]
· Ŵ2 ,

Ŵ3 = ∂w3h3 .

14

Forward-mode autodiff (step 4)

After our final operation, we have the gradients we wanted:

Original instruction

y = 〈h3, 1〉 .

Additional instructions

∇w1y = 〈Ŵ1, 1〉 ,

∇w2y = 〈Ŵ2, 1〉 ,

∇w3y = 〈Ŵ3, 1〉 .

All done! That was easy... but was it efficient?
15

Pros and cons of forward-mode autodiff

Our gradients’ estimates can be easily interleaved with the main opera-
tions. In addition, the previous estimates can be discarded after each up-
date, making it highly memory efficient.

On the other hand, the main operation required by forward-mode autodiff
is an (oi,oi−1)× (oi−1,pj)multiplication, which scales linearly in the number
of parameters. This makes it highly time consuming!

When running a mini-batch of n data points, all terms o1,o2, . . . will have a
factor n inside, and the multiplication will scale quadratically in n.

16

An insight into a better solution

In order to find a better solution, let us unroll one entire gradient compu-
tation:

∇w1y
(p1)

=

Forward−mode−−−−−−−−→
∂>
w1h1

(p1,o1)
· ∂>

h1h2
(o1,o2)

· ∂>
h2h3

(o2,o3)
· 1

(o3)
Reverse−mode←−−−−−−−−

. (6)

If we compute all operations in reverse (reverse mode), we only require
matrix-vector products, which for the most part are independent of p1 and
o1! The next algorithm implements an efficient way to do this.

17

Reverse-mode autodiff (informal)

1. Compute the output of all layers, storing each intermediate value. Set
h̃ = 1.

2. Going in reverse, i = l, l− 1, · · · , 1, compute the gradient of the
parameters of the current layer:

∇wiy =
[
∂>
wihi

]
· h̃

3. Update the gradient of y with respect to hi−1 exploiting again the
chain rule:

h̃ =
[
∂>
hi−1
hi
]
· h̃

18

Reverse-mode in action

Let us look at the operations required in our example:

h̃ = 1

∇w3y =
[
∂>
w3h3

]
· h̃ , h̃ =

[
∂>
h2h3

]
h̃ ,

∇w2y =
[
∂>
w2h2

]
· h̃ , h̃ =

[
∂>
h1h2

]
h̃ ,

∇w1y =
[
∂>
w1h1

]
· h̃ .

This is called the reverse (or adjoint) program.

19

Pros and cons of reverse-mode autodiff

Reverse-mode autodiff requires a lot of memory, because we need to store
all intermediate outputs when executing the main (primal) program.

However, the reverse program only requires matrix-vector products that
scale linearly in n. Empirically, the execution of the adjoint program re-
quires 3x-4x the time of the main one.

20

Backpropagation

Reverse-mode autodiff is more or less a standard in computing gradients
of deep neural networks. In this context, it is also called backpropagation.
The primal and adjoint program are called forward pass and backward pass.

It is easy to extend our derivation beyond linear programs, to acyclic compu-
tational graphs. In particular, if a weight participates in multiple operations
(weight sharing), its contribution is the sum of the two gradients.

Baydin, A.G., Pearlmutter, B.A., Radul, A.A. and Siskind, J.M., 2018. Automatic differentiation in machine learning:
a survey. Journal of Machine Learning Research, 18.

21

Additional pointers

There is a lot we are not able to cover, notably how to implement autodiff,
acyclic graphs, etc. Below a few pointers for advanced material:

I https://mblondel.org/teaching/autodiff-2020.pdf
I https://www.cs.toronto.edu/~rgrosse/courses/csc321_

2018/slides/lec10.pdf
I https://jax.readthedocs.io/en/latest/autodidax.html

22

https://mblondel.org/teaching/autodiff-2020.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://jax.readthedocs.io/en/latest/autodidax.html

Some historical key moments

I Wengert (1964) is credited as the first description of forward-mode AD,
which became popular in the 80’ mostly with the work of Griewank.

I Linnainmaa (1976) is considered the first description of modern
reverse-mode AD, with the fist major implementation in Speelpenning
(1980).

I Werbos (1982) is the first concrete application to NNs, before being
popularized (as backpropagation) by Rumelhart et al. (1986).

https://www.math.uni-bielefeld.de/documenta/vol-ismp/52_griewank-andreas-b.pdf

23

https://www.math.uni-bielefeld.de/documenta/vol-ismp/52_griewank-andreas-b.pdf

Automatic differentiation

Autodiff in practice

Vector-Jacobian products

One important consequence of the previous reasoning is that we do not
truly need Jacobians, as much as the following quantities:

vjpf ,x(v) = v>∂xf (x,w) (7)
vjpf ,w(v) = v>∂wf (x,w) (8)

We call these vector-Jacobian products. They can be significantly easier to
computer than standard Jacobians.

Remember that
[
A>v

]>
= v>A, which explains the name. Feel free to transpose everything if you prefer.

24

Autodiff primitives

Forward pass

Backward pass

Figure 2: For performing R-AD, primitives must be augmented with two VJP
operations to be able to perform a backward pass, corresponding to the input VJP
(7) and the weight VJP (8). One call for each is sufficient to perform the backward
pass through the primitive.

25

VJPs and Jacobians

We can recover the Jacobians’ computation by repeatedly calling the VJPs
with the basis vectors e1, . . . , en, to generate them one row at a time, e.g.,
for the input Jacobian we have:

∂xf (x,w) =


vjpf ,x(e1)
vjpf ,x(e2)

...
vjpf ,x(en)



26

Backpropagating through a linear projection

Let us consider for example:

f (x,W)
(o)

= W
(o,d)

x
(d)

.

In this case, trivially:
∂xf (x,W) = W .

However, the Jacobian with respect to W is a (o,o,d) tensor!

Can you compute it?

27

VJPs of a linear projection

The VJPs are both simpler:

vjpx(f , v) = W>v ,
vjpW(f , v) = xv> .

Practically, the core part of a framework like TensorFlow can be understood
as a collection of differentiable operations f (primitives) together with their
corresponding VJPs.

To define new primitives, one has to define both their operation and their VJP behaviour to use them in
backpropagation: https://www.tensorflow.org/guide/create_op.

28

https://www.tensorflow.org/guide/create_op

Element-wise operations

The other operation we have seen is an element-wise nonlinearity, which
does not have adaptable parameters:

f (x, {}) = φ (x) . (9)

The Jacobian is a (d,d) diagonal matrix:

[∂f (x, {})]i,i = φ′ (xi) . (10)

The JVP is instead:
vjpx(f , v) = φ′(x)� v . (11)

29

Autodiff in TensorFlow

To store all intermediate operations in TensorFlow, we can use a
tf.GradientTape object:

1 w1 = tf.Variable(tf.random.normal((...)))
2 w2 = tf.random.normal((...))
3 with tf.GradientTape() as tape:
4 # Operations inside the tape are recorded,
5 # assuming at least one operand is 'watched'
6 tape.watch(w2)
7 ...
8 y = tf.reduce_sum(h)

See Alice’s Adventures in a Differentiable Wonderland for more details and
an example of reimplementing a simple autodiff tool.

30

https://docs.google.com/presentation/d/1TJpUN64VMsBlLVzCDisGabvbZO6HSxMSHe-WK-FI1Mk/edit?usp=sharing

Autodiff in TensorFlow (2)

Once the forward pass is completed, we can compute gradients using the
tape:

1 g = tape.gradient(y, [w1, w2])

The tape also allows for Jacobians, although this basically requires one
backward pass for each output.

Support for forward-mode autodiff is also available inside TensorFlow with
tf.autodiff.ForwardAccumulator.

31

Gradient checkpointing

Figure 3: An example of gradient checkpointing. (a) We execute a forward pass,
but we only store the outputs of the first, second, and fourth blocks
(checkpoints). (b) The backward pass (red arrows) stops at the third block, whose
activations are not available. (c) We run a second forward pass starting from the
closest checkpoint to materialize again the activations. (d) We complete the
forward pass. Compared to a standard backward pass, this requires 1.25x more
computations. In general, the less checkpoints are stored, the higher the
computational cost of the backward pass.

32

Automatic differentiation

Choosing an activation function

How do we choose a nonlinearity?

Understanding back-propagation gives some interesting insights into how
to choose a proper activation function.

Remember that in this case:

vjpx(f , v) = φ′(x)� v . (12)

33

Vanishing and exploding gradients

Whenever a value goes through an activation function, during backpropa-
gation we multiply by the derivative of the function.

If we have many layers, we make a lot of these multiplications. As a result:

I If φ′(·) < 1 always, the gradient will go to zero exponentially fast in the
number of layers (vanishing gradient).

I If φ′(·) > 1 always, the gradient will explode exponentially fast in the
number of layers (exploding gradient).

34

Derivative of the sigmoid

−10 −5 0 5 10

s

0.0

0.2

0.4

0.6

0.8

1.0

S
ig

m
o

id
an

d
it

s
d

er
iv

at
iv

e

σ(s)

σ′(s)

Figure 4: The sigmoid function σ(·) is a poor choice as activation function (for
deep networks), because its derivative is bounded in [0, 0.25].

35

The rectified linear unit (ReLU)

A very common choice for deep networks is the rectified linear unit (ReLU),
defined as:

φ(s) = max (0, s) . (13)

Its derivative is either 1 (whenever s > 0), or 0 otherwise.

(The ReLU is not differentiable for s = 0, but this can be easily taken care
of with the notion of subgradients).

ReLU is a good default choice in most applications.

36

Subderivatives

The subderivative of a convex function f : R → R at a point x is a
point g such that:

f (z)− f (x) ≥ g(z − x) ∀z ∈ R .

Similar extensions exist also for non-convex and vector-valued functions.
For example, any point in [0, 1] is a subderivative of ReLU at 0. Most frame-
works use 0 by default.

Provably Correct Automatic Subdifferentiation for Qualified Programs (https://arxiv.org/abs/1809.
08530), A mathematical model for automatic differentiation in machine learning (https://arxiv.org/abs/
2006.02080).

37

https://arxiv.org/abs/1809.08530
https://arxiv.org/abs/1809.08530
https://arxiv.org/abs/2006.02080
https://arxiv.org/abs/2006.02080

ReLU and its derivative

−3 −2 −1 0 1 2 3

s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
eL

U
an

d
it

s
d

er
iv

at
iv

e

ReLU(s)

Derivative of ReLU(s)

Figure 5: A plot of ReLU and its derivative.

38

An example of vanishing gradient

1 2 3 4 5

Layer

10−1

100

G
ra

d
ie

n
t

n
or

m
o

f
w

ei
g

h
t

m
at

ri
x

Sigmoid

ReLU

Figure 6: We initialize a NN with 5 hidden layers. Weights are sampled from the
uniform distribution on [−0.5, 0.5]. We show the norm of a typical gradient
(cross-entropy on a few examples) with sigmoid and ReLU activation functions.

39

Reading material

I Chapter 6 in the book.
I Baydin, A.G., Pearlmutter, B.A., Radul, A.A. and Siskind, J.M., 2018.
Automatic differentiation in machine learning: a survey. Journal of
Machine Learning Research, 18.

I There are many didactical libraries for learning about autodiff (e.g.,
MicroGrad, TinyGrad, MiniTorch, ...).

40

	1
	Automatic differentiation
	Forward mode
	Autodiff in practice
	Choosing an activation function

