
Neural Networks for Data Science Applications
Master’s Degree in Data Science

Lecture 6: Convolutional neural networks

Lecturer: S. Scardapane

Introduction

Why fully-connected layers are not
enough

Definition of an image

An image is a 3-dimensional tensor X
(h,w,c)

, where:

I h is the height of the image (e.g., 512 pixels).
I w is the width of the image (e.g., 1024 pixels).
I c is the number of channels (e.g., 3 channels for a RGB image, 1
channel for a greyscale image).

The first two dimensions have a precise grid ordering, while the channels
do not have a precise ordering (i.e., we can switch RGB to GBR or BRG with
no information loss).

2

Vectorizing an image

A simple way to process an image is to vectorize it by stacking all its values:

x
(hwc)

= vect(X) .

Once this is done, we can apply what we know, e.g., a fully-connected layer:

h = φ(Wx) . (1)

Can you see what is wrong with this approach?

3

Vectorization of an image

Original	image:	32	x	32	x	3

...

Vectorized	form:	
3072	elements

3072	weights	
per	neuron!

Horse?

4

Where has the image gone?

Original	image:	32	x	32	x	3

...

Vectorized	form:	
3072	elements

Horse?

No	form	of	"spatial"	reasoning!

5

Drawbacks

We have lost all the spatial information after the first operation, i.e., we
cannot compose the previous block multiple times. A simple way to solve
this would be:

H = unvect(φ(W · vect(X))) (2)

However, we still need a huge number of parameters: for example, for a
1024× 1024 RGB image we need ≈ 3M parameters for a logistic regression!

Next, we show how we can properly incorporate this information, to define
a layer targeted for image-like data.

6

An example to keep in mind

As a running example to visualize what follows, consider a 1D sequence
(think of this as “4 pixels with a single channel”):

x = [x1, x2, x3, x4]

In this case, we do not need any reshaping operations, and the previous
layer (with c′ = 1) can be written as:


h1
h2
h3
h4

 =


W11 W12 W13 W14

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44



x1
x2
x3
x4


7

Convolutional neural networks

Convolutional layers

What we want

We want a layer of the form:

H
(h,w,c′)

= f (X)
(h,w,c)

,

with the following properties:

I the output tensor must exploit the ‘spatial information’ contained in
the image;

I It must be efficient (with a small number of parameters);
I It must be composable and differentiable, i.e., we want to do:

Y = (fl ◦ . . . ◦ f2 ◦ f1)(X)

8

Distance between pixels

We can define many distances between two pixels i, j and i′, j′, e.g.:

d(i, j, i′, j′) = max {|i− i′|, |j− j′|} .

Fix an odd number s = 2k + 1. A patch is a sub-image centered at (i, j),
containing all pixels (i′, j′) under distance k:

Pi,j,k
(s,s,c)

= [X]i−k:i+k,j−k:j+k,: . (3)

9

Visualizing a patch

We can think of a patch as a small slice of the original tensor:

Width
H
ei
gh

t
Ch
an
ne
ls

The size of the patch will be called the filter size or kernel size.

10

Locality

An image layer is local if [H]i,j only depends on Pi,j,k for some k.

We can achieve this by restricting the linear operation to the single patch:

Hij = φ
(
Wij · vect(Pk(i, j))

)Flattened patch (of shape s2c′c)

Position-dependent weight matrix

where we have a separate weight matrix Wi,j
(c′,ssc)

for each location. These are

called locally-connected layers.

11

Running example

Considering our toy example, assuming for example k = 1 (hence s = 3) we
can write the resulting operation as:


h1
h2
h3
h4

 =


W12 W13 0 0
W21 W22 W23 0
0 W31 W32 W33

0 0 W41 W42



x1
x2
x3
x4



12

Zero-padding

The operation is not defined for x1 and x4. Instead of shortening the output,
we can add 0 on the border whenever necessary:


h1
h2
h3
h4

 =


W11 W12 W13 0 0 0
0 W21 W22 W23 0 0
0 0 W31 W32 W33 0
0 0 0 W41 W42 W43





0
x1
x2
x3
x4
0


This is called zero padding.

13

Image padding

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

C
onvolutive filter

Same size as the
original image

14

Translational equivariance

The previous layer keeps the spatial information, but it is definitely not ef-
ficient: in total, it requires o · ssc · h · w parameters.

Fortunately, there is another nice property we can exploit.

An image layer is translational equivariant if Pi,j,k = Pi′,j′,k implies
[H]i,j = [H]i′,j′ .

Informally, we want to recognize something irrespective of where it appears
in the image, i.e., if something moves (the patch) we want the output feature
to move ‘with it’.

15

Convolutional layer

We can achieve translational equivariance easily by sharing the sameweights
across all locations, i.e., Wi,j = W:

[H]i,j = φ(W · vect(Pi,j,k)) , (4)

The resulting layer is called a convolutional layer. It has all the properties
we were looking for, including efficiency (we have only c′ · ssc parameters).

Remember that in general we always consider a version with bias:

[H]i,j = φ(W · vect(Pi,j,k)+ b
(c′)

) . (5)

16

Running example

The final convolutional layer in our toy example is:


h1
h2
h3
h4

 =


W2 W3 0 0
W1 W2 W3 0
0 W1 W2 W3

0 0 W1 W2



x1
x2
x3
x4

 (6)

where we now have only three weights W = [W1,W2,W3]
>. Note the special

(Toeplitz) structure of the matrix – the convolutional layer remains a linear
transformation.

17

Equivalent formulation

An equivalent way to define convolution is to consider a 4-dimensional
weight tensor W

(s,s,c,c′)
, with a scalar function to convert between offsets:

t(i) = i− k− 1 (7)

We now rewrite the output of the layer with explicit summations across the
axes:

Hijz =
2k+1∑
i′=1

2k+1∑
j′=1

c∑
d=1

[W]i′,j′,z,d[X]i′+t(i),j′+t(j),d (8)

In signal processing terminology, this is a filtering operation exploiting a
finite impulse response filter.

18

Terminology time!

I s = 2k+ 1 is called the kernel size or filter size. It is a hyper-parameter
of the layer, together with the number c′ of output channels.

I In accordance with signal processing, the elements of the matrix W (or
the equivalent tensor W) are called filters.

I A single slice [H]:,:,a is called an activation map. Sometimes, we
distinguish between pre-activation (before φ) and post-activation.

19

Filter operation 1/3

Kernel size
/ filter size

x = 0.5

0.5

Activation map
Figure 1: Start from the first patch, filling the first element of the activation map.

20

Filter operation 2/3

Kernel size
/ filter size

x = -1.3

0.5

Activation map

-1.3

Figure 2: The window is moved one pixel, and we compute a different activation.
21

Filter operation 3/3

Kernel size
/ filter size

x = ...

Activation map
Figure 3: At the end, we obtain an activation map for the entire image.

22

Convolutional layer

The previous operation is shown for a single filter. Stacking many filters
together gives us the complete convolutional layer.

C
onvolutive layer

(5 filters)
23

Receptive field

Suppose we stack several convolutional layers:

H = (f3 ◦ f2 ◦ f1)(X)

The receptive field of [H]i,j is the subset of X that contributed to its
computation.

For one layer, the receptive field is just Pi,j,k. For two layers, however (with
the same kernel size), it becomes Pi,j,2k. This justifies our choice of locality:
even if a single layer is highly localized, many layers can still process the
entire image at once, since the receptive field increases linearly.

24

Implementation

Most frameworks, including TensorFlow, provide a primitive with an efficient
low-level implementation:

1 # Image (with mini-batch dimension)
2 X = tf.random.normal((1, 64, 64, 3))
3

4 # Filters (filter size = 5, output filters = 100)
5 W = tf.random.normal((5, 5, 3, 100))
6

7 # Convolution
8 H = tf.nn.conv2d(X, W, 1, 'SAME')
9 print(H.shape) # (1, 64, 64, 100)

https://www.tensorflow.org/api_docs/python/tf/nn/conv2d. 25

https://www.tensorflow.org/api_docs/python/tf/nn/conv2d

Convolutional neural networks

Defining the network

Reducing dimensionality

We can define a convolutional block by interleaving convolutional layers
with activation functions:

H = (φ ◦ Conv ◦ . . . ◦ φ ◦ Conv)(X)

Convolutional blocks can modify the number of channels, but they keep the
spatial resolution (h,w) constant. We might want to reduce the resolution
in-between blocks, to make the networks faster and more efficient.

This is also justified from a signal processing perspective, where multi-
resolution filter banks are common.

26

Stride

In a convolution with stride, we compute only 1 every s elements of the
output tensor H, where s is the stride parameter.

For example, for s = 2, we have:

[H]i,j
(h/2,w/2,c′)

= φ(W · vect(P2i−1,2j−1,k)) ,

The tf.nn.conv2d function we saw before requires, in fact, a stride pa-
rameter.

27

Convolution with a larger stride

Figure 4: Left figure has stride = 1, right figure has stride = 2. Image source is
http://cs231n.github.io/convolutional-networks/.

28

http://cs231n.github.io/convolutional-networks/

Max-pooling

Alternatively, a max-pooling (or an average-pooling) layer can be used. It
computes the maximum (or the average) from small blocks of the input
tensor.

Differently from convolutional layers, it is common to consider even-dimensional
blocks (2x2, 4x4, ...). It acts on each channel separately.

29

Visualization of max-pooling

3.2 -1.5

0.2 0.7

2.7 0.5

-1.8 3.0

0.4 1.3

-2.0 0.1

1.25 -0.6

-0.8 1.0

3.2 3.0

1.3 1.25

Max-pooling

Figure 5: Visualization of max-pooling on a 4× 4 image with windows of size 2× 2.
Note that the maximum operation can be replaced with any differentiable
aggregation (e.g., average).

30

(1)

A standard CNN for classification is then composed by:

I Interleaving convolutional and pooling layers;
I Flattening (or global pooling);
I A classification block.

Note: with global pooling, the final layer is roughly invariant to a translation,
despite each convolutional layer being equivariant.

More recent CNNs add many variations on this basic architecture. How to
choose the sequence of layers and their hyper-parameters is still an open
model selection research issue.

31

Complete architecture of a CNN (2)

Block 1: H
(h′,w′,c′)

= (fl ◦ . . . ◦ f2 ◦ f1)(X) (convolutional or pooling layers)

Block 2a: h
(h′w′c′)

= vect(H) (flattening)

Block 2b: h
(c′)

= 1
h′w′

∑
i,j [H]i,j (global pooling)

Block 3: y = softmax(g(h)) (e.g., logistic regression)

32

Example of a simple CNN specification

Input shape
(64, 64, 3)

C
onvolutional layer

32 filters

M
ax-pooling

2 x 2 w
indow

C
onvolutional layer

64 filters

M
ax-pooling

2 x 2 w
indow

G
lobal pooling

Fully-connected layer
10 units

Shape
(64, 64, 32)

Shape
(32, 32, 32)

Shape
(32, 32, 64)

Shape
(16, 16, 64)

Shape
(64)

Shape
(10)

Backbone network Classifier head

Figure 6: Note how multiple down-sampling layers are required to make the final
classification dimensionality manageable. 33

Designing in blocks

Original image
64 x 64 x 3 C

onvolutional layer

M
ax-pooling

C
onvolutional layer

M
ax-pooling

...

Figure 7: When CNNs tends to become deep, it is simpler to reason in repeating
blocks made of multiple components. This is easy using the layering abstraction.

34

Convolutional neural networks

Other notable types of convolutions

1x1 convolutions

One important type of convolutional layer is a 1x1 layer, i.e., a layer with a
kernel size of 1 (k = 0), also called a pointwise convolution.

This can be understood as a pixel-wise operation, which is applied inde-
pendently at every pixel, with no contribution from the neighbours.

It is especially important when we desire to simply modify the number of
channels.

35

Depth-wise convolutional layer

An orthogonal idea is to apply a convolution to each channel independently,
by combining only information across the spatial dimensions.

The result is a depth-wise (separable) convolution:

Hijc =
2k+1∑
i′=1

2k+1∑
j′=1

Wi′,j′,cXi′+t(i),j′+t(j),c

This idea can also be extended to group convolution. A depthwise convo-
lution followed by a pointwise convolution is called a depthwise-separable
convolution and it is extremely common for modeling efficient architec-
tures.

36

Further readings

I Chapter 7 of the book.

37

	1
	Introduction
	Why fully-connected layers are not enough

	Convolutional neural networks
	Convolutional layers
	Defining the network
	Other notable types of convolutions

