
Neural Networks for Data Science Applications
Master’s Degree in Data Science

Lecture 7: Convolutions beyond images

Lecturer: S. Scardapane

About this lecture

Although we focused on images in the previous lecture, many other types
of data have a sequential / grid-like structure, albeit with different dimen-
sionality: time-series, audio, videos, text, ...

In this lecture we will see how to extend CNNs to these other cases, and
also some critical limitations, including their unsuitability in handling long-
term or non-regular dependencies. This will provide motivation for the next
class of models we will study, transformers.

2

Convolutions beyond images

1D and 3D convolutional layers

Temporal sequences

CNNs can be extended easily to other domains having grid-like structure of
various dimensions.

For example, consider n steps of a time-series x0, . . . , xn−1 ∈ Rc, each step
having c features (e.g., c different readings from different sensors).

We represent it using a matrix X
(n,c)

:

X ∼ (t , c)

Length of the sequence Features

We have a similar format for, e.g., text sequences, audio, DNA sequences...
3

1D convolutional layers

Given a patch size s = 2k + 1, define Pk(i)
(s,c)

as the rows in X at distance at

most k from i.

A 1D convolutional layer H
(s,c′)

= Conv1D(X), with c′ an hyper-parameter that

defines the output dimensionality, is defined row-wise as:

[Conv1D(X)]i = φ(W · vect(Pk(i)) + b) (1)

with trainable parameters W
(c′,sc)

and b
(c′)
. Like in the 2D case, this layer is local

(for a properly modified definition of locality) and equivariant to transla-
tions of the sequence.

4

Masked convolutions

For temporal domains, it is useful to define causal (masked) versions of the
convolution operation.

For a temporal sequence X
(n,c)

, a causal model H
(n,c′)

= f (X) is such that

[H]i depends only on [X]j for j ≤ i.

hi = φ
([
W�M

]
vect(Pk(i)) + b

)
Masked weight matrix

where Mij = 0 if the weight corresponds to an element in the input such
that j > i, 1 otherwise.

5

Causal convolutions

Time dimension

Figure 1: A 1D convolutional layer with causal convolutions. All links going
right-to-left are removed. As a result, for each unit the output only depends on
the previous time-instants.

6

Forecasting

For time-series, a common task is forecasting, i.e., predicting the next step
in the time-series. With a causal model, we have two options:

I Pool the output representation H over n, and apply a regressor head
to predict xn (also valid for non-causal models).

I Define a shifted target Y = [x1, . . . , xn], and train the model such that
H ≈ Y, i.e., at each time step the network predicts the next one:

l(Ŷ, Y) = ‖Ŷ− Y‖2 =
n∑
i=1

‖Ŷi − Yi‖2 (2)

Loss when predicting Xi+1

This is only possible with a causal model, otherwise information
would ‘leak’ from the input. 7

Forecasting with non-causal vs. causal models

Convolutional model

Global Average Pooling

MSE

(a) Single-step forecasting

Causal convolutional model

MSE

(b) Multi-step forecasting
8

Autoregressive models

Models of the second form are useful because they can be used to generate
data in an autoregressive way. We prompt the model with the beginning of
the sequence, and let it forecast the next step. Then, we concatenate it to
the input and prompt again the model to generate another step, and so on.

During training, we can feed the network only with true samples (teacher
forcing), or mix some of the network’s own predictions. Extrapolating out-
side the training data windows may still be difficult.

9

An example

Suppose we have n = 4, and we have observed two values x1 and x2. We
call the model a first time:

−
x̂3
−
−

 = f

x1
x2
0
0

We add x̂3 to the sequence and continue calling the model autoregressively
(we show in color the predicted values):

−
−
x̂4
−

 = f

x1
x2
x̂3
0

 ,

−
−
−
x̂5

 = f

x1
x2
x̂3
x̂4

 ,

−
−
−
x̂6

 = f

x2
x̂3
x̂4
x̂5

 . . .

10

Autoregressive generation

Causal model Causal model Causal model

Figure 2: Example of autoregressive generation with a single step in input, and the
model being called recursively multiple times. We show in gray padded values.

11

Convolutions beyond images

Applying CNNs to audio

Examples of audio classification

Many real-world problems require the classification of audio samples, e.g.:

1. Speech / non-speech identification (is he/she speaking now?);
2. Language identification (is it Italian?);
3. Genre / mood classification (is it rock?);
4. Determining the leading instrument;
5. Event recognition (is someone shooting?);
6. Scene recognition (are they in a bus? at a restaurant?).

12

Channels and sampling rate

An audio is a 1D sequence of samples, obtained with a certain sampling
rate, typically in one or two channels.

Figure 3: Simple example of an audio waveform (image source).

For a given audio, the number of samples can be very high: at a resolution
of 44kHz, we have almost half a million samples for each 10 seconds.

13

http://clipart-library.com/clip-art/sound-waves-transparent-background-14.htm

Spectrogram classification

Feature extraction
(e.g., STFT)

Convolutional
Neural Network

Frame hop 1 column: 1 frame

1
ro

w
: 1

 fr
eq

ue
nc

y

Figure 4: To simplify the problem we can sweep a window of fixed size (e.g., 40ms)
over the signal, compute a frequency representation (e.g., with a short-term
Fourier transform), and merge everything into a single spectrogram.

14

Sequence padding

Consider two audio files (or two time series, or two texts), described by their
corresponding input matrices X1

(t1,c)
and X2

(t2,c)
. The two inputs share the same

number of channels c (e.g., the number of sensors), but they have different
lengths, t1 and t2.

Convolutional models can handle variable-lenght inputs (why?), but in prac-
tice mini-batches cannot be built from matrices of different dimensions.
This is handled by zero-padding the resulting mini-batch to the maximum
dimension across the sequence length.

15

An example

Assuming for example, without lack of generality, t1 > t2, we can build a
“padded” mini-batch as:

X = stack
(
X1,
[
X2
0

])

where stack operates on a new leading dimension, and the resulting tensor
X has shape (2, t1, c). We can generalize this to any mini-batch by consider-
ing the largest length with respect to all elements of the mini-batch.

16

Can we handle the full waveform?

By having sufficient computational power, one can also work on the raw
audio waveform.

When using convolutions, a key idea is the use of dilated convolutions (a.k.a.
atrous convolutions, from French à trous), where neighbours are selected
with exponentially increasing steps.

In this way, the receptive field of an item increases exponentially with the
number of layers.

17

Visualization of a dilated 1D convolution

Dilation = 1

Dilation = 2

Dilation = 4

Figure 5: Example of dilated (atrous) convolution, with increasing dilation for each
layer.

18

WaveNet

WaveNet (2016) was one of the first models to propose a 1D convolutional
network dilated and causal convolutions for generating speech. In their
design, dilation factors increased from 1 to an upper bound (e.g., 512), before
restarting from 1.

Note that autoregressive generation of speech can be very slow, because
the model must be called hundreds of thousands of times: although con-
volutive models have given way to transformers today, this problem is still
true (e.g., the recent research on speculative decoding in LLMs).

Oord, A.V.D., et al., 2016. WaveNet: A generative model for raw audio. arXiv preprint arXiv:1609.03499.

19

Convolutions beyond images

Applying CNNs to text

Applying convolutive networks to text processing

Text data is another field with a vast range of possible applications, e.g.:

1. Recognition of a topic (is it talking about soccer?);
2. Hate speech recognition (is it respecting our code of conduit?);
3. Sentiment analysis (is it a positive review?);
4. Web page classification (is it an e-commerce website?).

Causal models applied to text are the backbone of LLM models such as
ChatGPT.

20

Handling text data

Text must be preprocessed properly to be handled by a neural network. At
the very least we need to perform two basic operations:

1. Tokenize the text to split it in into basic units (tokens) that will form a
sequence.

2. Embed each token (one or more characters), i.e., convert it into
numerical features usable by a neural network.

By the end of this procedure we should have a matrix X
(n,d)

of n tokens, each

of size d.

In our discussion, we are ignoring a large number of possible preprocessing operations, e.g., stemming, stop
word removal, etc.

21

Convolutions beyond images

Text tokenization

Text tokenization

Classify this text!

Character
tokenizer

['c', 'l', 'a', ..., 't', '!']

Sub-word
tokenizer

['clas', 'si', ..., 'text']

Word
tokenizer

['classify', 'this', 'text']

Embedding

Neural network

Figure 6: Tokenization can be performed at various levels in the sentence, and it
is generally handled by an external library (e.g., Spacy).

22

https://spacy.io/usage/linguistic-features

The importance of tokenization

Tokenization is crucial because it determines what the network will ‘see’.
Consider that v15 of Unicode has almost 150k possible symbols, which can
be combined in many forms (numbers, dates, function names, ...).

Subword tokenization is very common, especially when learning the sub-
words from large corpora of texts (e.g., byte pair encoding, BPE). See https:
//huggingface.co/docs/transformers/tokenizer_summary for a
summary.

Also see https://platform.openai.com/tokenizer to visualize a to-
kenization in practice.

23

https://huggingface.co/docs/transformers/tokenizer_summary
https://huggingface.co/docs/transformers/tokenizer_summary
https://platform.openai.com/tokenizer

Convolutions beyond images

Token embeddings

One-hot encoding

The simplest vectorial embedding for text is a one-hot encoding according
to a predefined dictionary:

I Character-level: each character is represented by a 1-of-C binary
vector, where C is the number of allowable characters.

I Sub-word/word-level: similar, but each word/sub-word is
represented with respect to a fixed vocabulary of sub-words / words.

I Sentence-level: each sentence can be represented by summing the
one-hot encodings for the single tokens (bag-of-words).

24

Dense embeddings

One-hot vectors are very simplistic representations of the information con-
tained in text. A more general solution is to learn a set of embeddings:

1. For every possible token c, initialize randomly a fixed-size vector vc.
2. During training, substitute each token in the sequence with the
corresponding vector (look-up).

3. The set of vectors vc can be optimized together with the parameters of
the neural network by doing gradient descent.

25

Visualizing the embedding procedure

Check
Out

This

...

Bowling

Check this out

Tokenizer

[2, 16, 3]

1D CNN

Figure 7: Using custom embeddings for text classification. 26

Custom embeddings in Keras

Custom embeddings are extremely simple to train within a TensorFlowmodel:

1 model = Sequential()
2

3 # Get embeddings for each token
4 # Input must be (batch_size, max_sentence_length)
5 # Every element of the input is an index [0, ..., dictionary_size-1]
6 model.add(Embedding(dictionary_size, B, input_length=max_sentence_length))
7

8 # Optional: Get average embedding for the sentence
9 model.add(GlobalAveragePooling1D())
10

11 # ...

27

Dense vs. sparse embeddings

One-hot encodings are sparse, in the sense that most values are 0. In addi-
tion, they are not very informative: for example, the distance between any
two encodings e0 and e1 is either 0 or

√
2.

Instead, trained embeddings can capture a rich semantic underlying the
data, which is reflected in the possibility of doing algebraic manipulations
on the embeddings themselves, e.g., see https://projector.tensorflow.
org/. However, they can also capture biases of the data.1

1Bolukbasi, T. et al., 2016. Man is to computer programmer as woman is to homemaker? Debiasing word
embeddings. NeurIPS.

28

https://projector.tensorflow.org/
https://projector.tensorflow.org/

Pre-trained text embeddings

Text embeddings can also be pre-trained using a variety of algorithms:

1. Word2Vec (Mikolov et al., 2013);
2. Global Vectors for Word Representation (GloVe) (Pennington et al.,
2014);

3. Embeddings from Language Models (ELMo) (Peters et al., 2018);
4. Generative Pre-Training (GPT) (Radford et al., 2018);
5. Bidirectional Encoder Representations from Transformers (BERT)
(Devlin et al., 2018).

29

	1
	Convolutions beyond images
	1D and 3D convolutional layers
	Applying CNNs to audio
	Applying CNNs to text
	Text tokenization
	Token embeddings

