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Designing the transformer

Moving beyond convolutional layers



The problem of convolutions

The assumption of locality embedded in convolutional layers is not always
optimal: in a text, for example, a subject can depend on an object quite far
from its position. In text, audio, graphs, etc., dependencies can be sparse,
long-range, and possibly dynamic.

For example, in ‘the cat is on the table’ and ‘the cat, which belonged to my
mother, is on the table’, the relation between the two words is similar, but
their relative positioning is quite different.
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Transformers

In 2017 a new architecture, called transformer, was proposed for text pro-
cessing and then extended to most other modalities. The original model
(Vaswani et al., 2017), was an encoder-decoder model for NLP tasks. Today,
similar models are widespread in computer vision, audio, biology, etc.

The core of the transformer is a new layer called multi-head attention
(MHA). It replaces the assumption of locality with a more general notion
of (soft) sparsity of interactions.
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Transformers have better scaling lawys

Figure 1: Open-Sourcing BiT: Exploring Large-Scale Pre-training for Computer
Vision (Google AI Blog). 4



Designing the transformer

Self-attention



Moving beyond locality

Consider a 1D sequence x1, . . . , xn, where xi ∈ Rd. Because transformers
originate from NLP, we call each element of the sequence a token and d the
embedding dimension.

We can write a 1D convolutional layer (ignoring padding) of kernel size k as:

hi =
k∑

j=−k

Wjxi+j , (1)

where W
(2k,d,d)

is the kernel tensor. We want to remove the assumption of

locality while maintaining parameter efficiency.
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Continuous convolutions

Increasing k increases the number of parameters linearly. As an alternative,
we can learn the parameters of the kernel for each possible position i via a
trainable block g(i) : N → Rd×d taking as input the shift:

hi =
n−i∑

j=−i+1

g(i+ j)xj . (2)

These are called continuous convolutions, and they work well with image-
like data with, e.g., variable sizes and resolutions.

Romero, D.W. et al., 2022. Towards a General Purpose CNN for Long Range Dependencies in ND. arXiv preprint
arXiv:2206.03398.
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Non-local neural networks

The previous model works well at handling non-locality, but it still assumes
that dependencies are regular, i.e., they only depend on j. We can make it
more general by letting them depend on the values of tokens instead:

hi =
n∑
j=1

α(xi, xj)xj . (3)

This is an example of a non-local neural networkmodel. By a proper choice
of the weighting function α(·, ·) we can obtain the MHA layer.

Wang, X., Girshick, R., Gupta, A. and He, K., 2018. Non-local neural networks. In IEEE/CVF CVPR.
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Schematic depiction

Input
tokens

Output
tokens

(a) Conv1D, kernel size 3 (b) Continuous convolution (c) Non-local model

Output token Input token inside the
Conv1D receptive field

Input token outside the
Conv1D receptive field

Figure 2: Example of short-term (ST, blue) and long-term (LT, green) interaction.
(a) Conv1D model: ST has a trainable weight, LT is removed; (b) both connections
have weights given by g(−1) and g(2); both connections have weight that depend
on the tokens’ similarities.
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Choosing the weighting function

We make a few assumptions to simplify the layer:

I The output of α is a scalar (not a matrix). We call α the attention
scoring function (or attention function), and its outputs the attention
scores for token i.

I For each token, its attention scores are normalized in the simplex
(they are positive and they sum to one). With this formulation, each
token will have a ‘budget’ of attention to allocate, i.e., increasing an
attention score necessarily decreases the attention over the
remaining tokens.
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Attention layer

There are many choices for the attention function; commonly, we use the
normalized dot product α(xi, xj) = 1√

dx
>
i xj because it is fast and efficient to

parallelize.

Putting everything together we obtain (always for a single token):

hi =
n∑
j=1

softmaxj
(

1√
d
x>i xj

)
xj . (4)

Why the extra factor
√
d? Suppose the elements of xi are sampled according toN (0, σ2). The variance of x>i xj

will be σ4 (check!), which can easily saturate the softmax with a single large (positive or negative) value.
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Adding some parameters

In its current formulation, the layer lacks trainable parameters. To this end,
we first reproject the input three times using three trainable matrices:

qi = W>
q xi, ki = W>

k xi, vi = W>
v xi .

We call these the query, key, and value (for reasons to be explained in detail
later on). The self-attention (SA) layer can now be written as:

hi =
∑
j

softmax
(

1√
d
q>
i kj

)
vj .
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Vectorized version

Let us write the previous equation in a vectorized form, by stacking the n
input vectors {xi} into a matrix X

(n,d)
. SA can be rewritten as:

Q
(n,q)

= XWq, K
(n,q)

= XWk, V
(n,v)

= XWv

H
(n,v)

= softmax
(
QK>
√q

)
V .

where the hyper-parameters are q and v. When the layer is applied to a
batch of elements (e.g., sentences), it computes the attention function in-
dependently for every element of the batch (i.e., each token can attend only
to tokens in the same sentence).
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Visualizing the attention operation
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Figure 3: Visualization of the attention operation (ignoring the initial projections).
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The dictionary analogy

To understand the terminology, consider a Python dictionary d = dict(...).
It is a collection of key/values (k,v) pairs, such that for a given query
d[q] = v if k is stored inside. If the key does not exists, an error or de-
fault value is returned.

We can consider instead a ‘soft’ variant that always returns a value, by con-
sidering the value associated to themost similar key, even if a perfect match
does not occur. If the keys, queries, and values are vectors and the distance
is the dot product, this is equivalent to SA when replacing the softmax with
an argmax over rows!
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Hard attention as a dictionary

     0,      1

Argm
ax

Difficult in practice
(gradient zero ≈ everywhere)

Figure 4: Hard attention is fundamentally equivalent to a dictionary with
associative recall.
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Multi-head attention

The SA layer can handle quasi-sparse dependencies (because of the soft-
max), and also dynamic ones (because of the attention function). However,
what happens when the token can depend on multiple subsets of tokens?

A common generalization in this case ismulti-head attention (MHA). It works
by computing i = 1, . . . ,h separate sets of keys, querys, and values:

Qt = XWq,t, Kt = XWk,t, Vt = XWv,t

Ht = softmax
(
QtK>

t√q

)
Vt .

We now have 3h trainable matrices, or a 3× h× q tensor assuming q = v.
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Multi-head attention (2)

The previous operation has h separate outputs; we combine them by con-
catenation over the embedding dimension, and a final reprojection with a
trainable output matrix Wo:

H =
[
H1 · · · Hh

]
Wo .

As hyperparameters, we typically choose an embedding dimension m, an
output size o, and a number of heads h, and we set q = v = m//h for all
heads.
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Visualizing multi-head attention

Figure 5: Visualization of the multi-head attention operation (D2L, Chapter 11.5).
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Designing the transformer

The Transformer block



The transformer block

In transformers, the MHA layer is always used inside a more complex block,
called the transformer block. Originally, this was composed of a MHA layer,
two layer normalization operations, two residual connections, and a so-
called position-wise network as follows:

1. Start with a MHA layer: H = MHA(X).
2. Add a residual connection and a layer normalization operation:
H = LayerNorm(H+ X).

3. Apply a fully-connected model g(·) on each row: F = g(H).
4. Do again step 2: H = LayerNorm(F+ H).

Vaswani, A. et al., 2017. Attention is all you need. NeurIPS.
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Design of the block

The design of the block was mostly based on empirical considerations.
Roughly speaking, steps (1)-(2) correspond to a token mixing operation,
while steps (3)-(4) are a per-token update which is akin to a 1x1 convolu-
tion. The block is similar in spirit to the depthwise separable convolution
model.

The intermediate MLP is typically designed as a 2-layer MLP, with hidden
dimension an integer multiple of the input dimension (e.g., 3x, 4x), and no
biases.

Vaswani, A. et al., 2017. Attention is all you need. NeurIPS.
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Pre- and post-normalized blocks

MHA

LN

Inputs

MLP

LN

(a) Post-normalized block

MHA

LN

Inputs

MLP

LN

(b) Pre-normalized block

Figure 6: The original block is called post-normalized. A pre-normalized variant is
also common due to it being simpler to train in most cases.1

1Xiong, R. et al., 2020. On layer normalization in the transformer architecture. ICML.
21



Variants of the transformer block

Many other variants are now common, depending on the application and
computational considerations, e.g.:

I Parallel variants perform the MHA and MLP operations in parallel, i.e.,
H = H+MLP(H) +MHA(H). In this way, the initial and final projections
of the MLP and MHA layers can be fused.2

I Q/K normalized variants add additional LN operations over the keys
and queries (ibidem).

I Multi-query variants share the same keys and values over different
heads to save computations.3

2Dehghani et al., 2023. Scaling vision transformers to 22 billion parameters. ICML.
3Shazeer, N., 2019. Fast transformer decoding: One write-head is all you need. arXiv preprint arXiv:1911.02150.
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Designing the transformer

Positional embeddings



Permutation matrices

Consider the 3× 3 matrix defined as:

P =

1 0 0
0 0 1
0 1 0

 .

It is easy to check that:

P

x1x2
x3

 =

x1x3
x2

 .

These are called permutation matrices.
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The MHA layer is equivariant to permutations

In audio and text, the ith row of X represents a single time-step or a single
text token (e.g., a word). In a MHA layer, their ordering is lost, because the
layer is equivariant to the ordering (similar to the GAT layer for graphs).

If we multiply X by a permutation matrix P, then (the same holds trivially
for the entire block):

MHA(PX) = P ·MHA(X) .

This is not a good property to have for sequences.

This is easy to show, since (PK)> = K>P> and softmax(PQK>P>)PV = P softmax(QK>)V.
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Visualizing permutation equivariance

MHA

MHA
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Positional embeddings

Before the first MHA layer, we concatenate or sum to the input X a matrix of
positional embeddings E

(n,e)
:

X′ = [X ‖ E] or X′ = X+ E ,

where each row [E]i should uniquely encode the position of every element
of the sequence.

Using this strategy, we ‘break’ the equivariance:

MHA(PX ‖ E) 6= P ·MHA(X ‖ E) .
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Visualization of positional embeddings

"Tut Tut Child"

Tokenization
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Figure 7: The same token at two different positions is now represented by
different vectors after adding the positional embeddings.
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Simple positional embeddings

We can encode the position for a sequence of maximum length p with a
one-hot vector of dimension p, e.g.:

E0 = [1, 0, 0, . . .] , E1 = [0, 1, 0, . . .] , E2 = [0, 0, 1, . . .] , · · · .

Or with a single increasing scalar:

E0 = [0/p] , E1 = [1/p] , E2 = [2/p] , · · · .

Both strategies are not particularly good empirically.
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Trainable positional embeddings

We can learn the positional embeddings using the tf.keras.layers.Embedding
layer:

I To each position i we associate an embedding vector of fixed
dimension.

I The embeddings are trained with the rest of the network.

Note that we need to fix the maximum length of the sentence. For longer
sentences, we need to linearly interpolate the set of vectors up to a larger
dimension (this is the strategy used in BERT and the Vision Transformer
described below).
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Sinusoidal embeddings

Consider a single sinusoidal function of frequency ω:

Ei = [sin(iω)] .

We can interpret this as a clock with frequency ω: for two points inside a
single rotation, it will give us their relative distance. For other points, the
distance will be precise modulo the frequency.
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Multiple sinusoidal embeddings

To uniquely identify any possible position, we can consider multiple sinu-
soids, each with a frequency ωj, j = 1, . . . , e:

Ei = [sin(iω0) , sin(iω1) , . . . , sin(iωe)] .

You can think of this as a clock with e different hands, each rotating at
its own frequency. This is a nice representation because it can possibly
generalize to any length, without the need to impose a maximum length a
priori.
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Choosing the frequency

An empirically good choice for the frequencies (popularized by (Vaswani et
al., 2017)) is:

ωj =
1

10000j/e
.

For j = 0, this has frequency 2π. For j = e, this has frequency 10000 · 2π. In
the middle, the frequency are increasing at a geometric progression.

To reduce the number of parameters, it is also common to sum the posi-
tional encodings instead of concatenating (in which case the dimension e
is equal to d):

X′ = X+ E .
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Final version

A popular extension is to alternate sines and cosines of the same frequency:

[E]i,2j = sin

(
i

100002j/e

)
, (5)

[E]i,2j+1 = cos

(
i

100002j/e

)
. (6)

One important property of this encoding is that it is possible to translate
an encoding via matrix multiplication:

[E]i+p = [E]iT(p) for some T(p) .

See https://kazemnejad.com/blog/transformer_architecture_positional_en-
coding/ and references therein. 33
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Visualizing positional encodings
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Figure 8: Visualization of the sinusoidal positional encodings (book, Chapter 10.6). 34



Relative positional embeddings

Another possibility is using relative positional embeddings. In this case, we
modify the attention function to make it depend on the relative distance i−j
between tokens.

For example, attention with linear biases4 (ALiBi) adds trainable biases bij:

α(xi, xj, i− j) = x>i xj + bij . (7)

Another common option are rotary position embeddings5 (RoPE).
4Press, O., Smith, N.A. and Lewis, M., 2021. Train short, test long: Attention with linear biases enables input

length extrapolation. arXiv preprint arXiv:2108.12409.
5Su, J. et al., 2021. Roformer: Enhanced transformer with rotary position embedding. arXiv preprint

arXiv:2104.09864.
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Visualization of ALiBi

Figure 9: Linear biases for attention (reproduced from Press, Smith, Lewis, 2021.).
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Designing the transformer

The complete transformer model



Putting everything together

Figure 10: The final model is built with positional encodings and a stack of n
transformer blocks (adapted from Chapter 10.7 of the book).
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Classification token

To perform classification or regression, we can apply a final global pooling
on the n tokens and one or more fully-connected layers.

An alternative that is empirically found to work well is the class token, which
is an additional trainable token c added to the input matrix:

X′
(n+1,d)

=

[
X
c>

]
.

The transformermodel is applied to thematrix X′ as input (H = Transformer(X′)),
and classification is performed on its last row:

y = softmax(W>[H]n+1) .
38



Designing the transformer

Causal models and encoder-decoder
models



Encoder-decoder models

The original transformer model was a more general model defined for se-
quence to sequence (seq2seq) tasks, such as machine translation (variable
number of tokens in inputs and in output).

It performed an encoding of the input sequence, which was then decoded
by a second, masked transformer to generate the output sequence. In order
to understand it, we need to introduce two further mechanisms: masked
attention and cross-attention.

For this reason, themodel described before is sometimes called an encoder-
only Transformer.

Vaswani, A., et al., 2017. Attention is all you need. In Advances in neural information processing systems (pp.
5998-6008).
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Building a causal transformer

In order to build a causal transformer variant, we can replace the SA layer
with a masked variant:

H = softmax
(
QK> �M

√q

)
V .

where M has a triangular structure:

Mij =

1 if j ≤ i
−∞ otherwise

. (8)

In practice we can use very small numbers, e.g., 10−10.
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Visualizing the masking operation

Softm
ax

Figure 11: Note that masking with 0 is invalid because exp(0) = 1, and masking
after the softmax is invalid because of its denominator.
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Cross-attention

Given two sets X and Z, cross attention is defined as:

CA(X, Z) = softmax
(
(ZWq) (XWk)

>
)
XWv . (9)

This is a useful operation that can combine information coming from dif-
ferent streams of information (e.g., audio-visual datasets).
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Full encoder-decoder architecture
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Designing the transformer

Computational considerations



Comparing convolutive layers and MHA layers

Figure 12: Adapted from Chapter 10.6 of Dive into Deep Learning.
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Computational cost comparison

Consider a 1D convolutional operation H
(n,d)

= Conv1D(X)
(n,d)

with a filter size of

k. Computing the output requires O(nkd2) operations.

Self-attention (with one head) requires O(nd2) time for computing keys,
queries, and values, and O(n2d) time for computing the output. The n2

term limited the application to large sequences, although very efficient im-
plementations and hardware are available nowadays (e.g., FlashAttention6).

A single layer of MHA has a receptive field of n, while the convolutive layer
has a receptive field of k.

6https://github.com/Dao-AILab/flash-attention
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Memory considerations

Materializing the QK> matrix also requires O(n2) memory. Modern imple-
mentations (e.g., FlashAttention) avoid this by processing tokens in multiple
chunks (see book). This can be done by storing intermediate values on the
denominator of the softmax, and only applying the normalization at the end
(lazy softmax).
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KV Cache

KV Cache

Figure 13: The KV Cache is an essential component of autoregressive
implementations (see book).
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Practical transformer models

Text Transformers



Transformers for contextual embeddings

The majority of pre-trained word embedding models are standard trans-
former models trained on the sequence of text tokens.

I BERT-like models are pre-trained by masking one word in a sentence,
and reconstructing the full sentence in output.

I GPT-like models are (causal) variants pre-trained to generate the
sequence auto-regressively.

These models are called contextual embeddings because the same word in
different sentences can be encoded to different vectorial representations.

Qiu, X., et al., 2020. Pre-trained models for natural language processing: A survey. Science China Technological
Sciences, pp. 1-26.
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Self-supervised learning

Because these models are trained from the raw text alone (no specific tar-
gets) they are called self-supervised models (we will cover this more in-
depth later).

Their strengths is that scaling laws for transformers are empirically better
than for other models (i.e., they benefit more from increasing the dataset
by order of magnitude).

In natural language processing, this is also shown by the emergence of
paradigms like text-prompting and zero-shot learning.
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Foundation models

Figure 14: An emerging name for these huge, pre-trained models is foundation
models.

Bommasani, R., et al., 2021. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258.
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Practical transformer models

Vision, Audio, & Graph Transformers



Applying transformers on images

One important realization of the last two years is that transformers can
also benefit computer vision, especially when trained on huge datasets (e.g.,
ImageNet21k).

However, this requires to convert the original image (a 2D grid) into a 1D se-
quence (actually, a set together with the positional embeddings). Because
this would scale quadratically in the number of pixels, a common solution
is to work on patches of the original image.
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Vision Transformer (ViT)

Figure 15: The Vision Transformer (ViT) is a standard transformer applied on top
of image patches.

Dosovitskiy, A., et al., 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929. 52



Mixer models

Figure 16: Mixer models are variants of the ViT, where the MHA is replaced by
fully-connected layers.

Tolstikhin, I., et al., 2021. MLP-Mixer: An all-MLP architecture for vision. arXiv preprint arXiv:2105.01601. 53



Audio transformers

Figure 17: Architectures like Wav2Vec 2.0 are pre-trained audio models exploiting
transformers However, this is harder because of the nature of the audio signal.

Baevski, A., Zhou, H., Mohamed, A. and Auli, M., 2020. wav2vec 2.0: A framework for self-supervised learning of
speech representations. arXiv preprint arXiv:2006.11477. 54



Graph transformers

Figure 18: We can also design graph transformers, where nodes become tokens
and the connectivity is embedded inside the positional embeddings.

Ying, C., et al., 2021. Do transformers really perform badly for graph representation?. Advances in Neural
Information Processing Systems, 34, pp. 28877-28888.
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Multimodal models

"Describe the image"

Image
tokenization

Text 
tokenization

Autoregressive
transformer

"An illustration of Alice"

Figure 19: Transformers also simplify multimodal models by projecting tokens of
different modalities in a single embedding space.

Ying, C., et al., 2021. Do transformers really perform badly for graph representation?. Advances in Neural
Information Processing Systems, 34, pp. 28877-28888.
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Further readings

I Chapters 10 and 11 from the book.
I https://jalammar.github.io/illustrated-transformer/.
I https://srush.github.io/raspy/ for intuitions about how transformers
can work.
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