📒 Books

S. Scardapane, Alice's Adventures in a Differentiable Wonderland -- Volume I, A Tour of the Land, arXiv preprint 2404.17625, 2024.
Link

👐 Preprints and whitepapers

[P15] Baiocchi, A., Spinelli, I., Nicolosi, A., Scardapane, S., Adaptive Point Transformer, arXiv:2401.14845, 2024.
Link  

[P14] Hajij, M., et al., TopoX: A Suite of Python Packages for Machine Learning on Topological Domains, arXiv:2402.02441, 2024.
Link   Code  

[P13] Montagna, M., Scardapane, S., & Telyatnikov, L., Topological Deep Learning with State-Space Models: A Mamba Approach for Simplicial Complexes, arXiv:2409.12033, 2024.
Link  

[P12] Telyatnikov, L., Bernardez, G., Montagna, M., Vasylenko, P., Zamzmi, G., Hajij, M., Schaub, M., Miolane, N., Scardapane, S., Papamarkou, T., TopoBenchmarkX: A Framework for Benchmarking Topological Deep Learning, arXiv:2406.06642, 2024.
Link   Code  

[P11] Gargiulo, A.A., Crisostomi, D., Bucarelli, M.S., Scardapane, S., Silvestri, F., Rodolà, E., Task Singular Vectors: Reducing Task Interference in Model Merging, arXiv:2412.00081, 2024.
Link  

[P10] Candelori, B., Bardella, G., Spinelli, I., Pani, P., Ferraina, S., and Scardapane, S., Spatio-temporal transformers for decoding neural movement control, bioRxiv preprint, 2024.
Link  

[P9] Gambella, M., Pomponi, J., Scardapane, S., Roveri, M., NACHOS: Neural Architecture Search for Hardware Constrained Early Exit Neural Networks, arXiv:2401.13330, 2024.
Link  

[P8] Guerra, M., Scardapane, S., Bianchi, F.M., Interpreting Temporal Graph Neural Networks with Koopman Theory, arXiv preprint arXiv:2410.13469, 2024.
Link  

[P7] Torda, T., Ciardiello, A., Gargiulo, S., Grillo, G., Scardapane, S., Voena, C., Giagu, S., Influence based explainability of brain tumors segmentation in multimodal Magnetic Resonance Imaging, arXiv:2405.12222, 2024.
Link  

[P6] Verdini, F., Melucci, P., Perna, S., Cariaggi, F., Gaido, M., Papi, S., Mazurek, S., Kasztelnik, M., Bentivogli, L., Bratières, S., Merialdo, P., Scardapane, S., How to Connect Speech Foundation Models and Large Language Models? What Matters and What Does Not, arXiv:2409.17044, 2024.
Link  

[P5] Pomponi, J., Devoto, A., Scardapane, S., Cascaded Scaling Classifier: class incremental learning with probability scaling, arXiv:2402.01262, 2024.
Link  

[P4] Devoto, A., Alvetreti, F., Pomponi, J., Di Lorenzo, P., Minervini, P., Scardapane, S., Adaptive Layer Selection for Efficient Vision Transformer Fine-Tuning, arXiv preprint arXiv:2408.08670, 2024.
Link  

[P3] Devoto, A., Petruzzi, S., Pomponi, J., Di Lorenzo, P., Scardapane, S., Adaptive Semantic Token Selection for AI-native Goal-oriented Communications, arXiv preprint arXiv:2405.02330, 2024.
Link  

[P2] Wójcik, B., Devoto, A., Pustelnik, K., Minervini, P., Scardapane, S., Adaptive Computation Modules: Granular Conditional Computation For Efficient Inference, arXiv:2312.10193, 2023.
Link   Code  

[P1] Telyatnikov, L., Bucarelli, M.S., Bernardez, G., Zaghen, O., Scardapane, S., Lio, P., Hypergraph Neural Networks through the Lens of Message Passing: A Common Perspective to Homophily and Architecture Design, arXiv:2310.07684, 2023.
Link  

📰 Journal publications

[J56] Scardapane, S., Baiocchi, A., Devoto, A., Marsocci, V., Minervini, P., Pomponi, J., Conditional computation in neural networks: principles and research trends, Intelligenza artificiale, In press, pp. 1-16, 2024.
Link   arXiv  

[J55] Spinelli, I., Scardapane, S., & Uncini, A., A Meta-Learning Approach for Training Explainable Graph Neural Networks , IEEE Transactions on Neural Networks and Learning Systems, 35(4), pp. 4647-4655, 2024.
Link   DOI   arXiv   Code  

[J54] Ercolino, S., Devoto, A., Monorchio, L., Santini, M., Mazzaro, S., & Scardapane, S., On the robustness of vision transformers for in-flight monocular depth estimation, Industrial Artificial Intelligence, 1, pp. 1-14, 2023.
Link   DOI  

[J53] Devoto, A., Spinelli, I., Murabito, F., Chiovoloni, F., Musmeci, R., & Scardapane, S., Re-identification of objects from aerial photos with hybrid siamese neural networks, IEEE Transactions on Industrial Informatics, 19(3), pp. 2997-3005, 2023.
Link   DOI  

[J52] Pomponi, J., Dantoni, D., Nicolosi, A., & Scardapane, S., Rearranging pixels is a powerful black-box attack for RGB and infrared deep learning models., IEEE Access, 11, pp. 11298-11306, 2023.
Link   DOI   Code  

[J51] Guerra, M., Scardapane, S., Bianchi, F.M., Probabilistic load forecasting with Reservoir Computing, IEEE Access, 11, pp. 145989-146002, 2023.
Link   DOI   arXiv   Code  

[J50] Comminiello, D., Nezamdoust, A., Scardapane, S., Scarpiniti, M., Hussain, A., & Uncini, A., A New Class of Efficient Adaptive Filters for Online Nonlinear Modeling, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(3), pp. 1384-1396, 2023.
Link   arXiv  

[J49] Guizzo, E., Weyde, T., Scardapane, S., & Comminiello, D., Learning Speech Emotion Representations in the Quaternion Domain, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 31, pp. 1200-1212, 2023.
Link   DOI   Code  

[J48] Pomponi, J., Scardapane, S., & Uncini, A., Continual Learning with Invertible Generative Models, Neural Networks, in press, pp. 1-10, 2023.
Link   DOI   arXiv   Code  

[J47] Hassija, V., Chamola, V., Mahapatra, A., Singal, A., Goel, D., Huang, K., Scardapane, S., Spinelli, I., Mahmud, M., Hussain, A., Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence, Cognitive Computation, in press, pp. 1-30, 2023.
Link   DOI  

[J46] Marsocci, V., Coletta, V., Ravanelli, R., Scardapane, S., & Crespi, M., Inferring 3D change detection from bitemporal optical images, ISPRS Journal of Photogrammetry and Remote Sensing, 196, pp. 325-339, 2023.
Link   arXiv   Code  

[J45] Verdone, A., Scardapane, S., Panella, M., Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production, Applied Energy, 353, Part B, pp. 1-13, 2023.
Link   DOI  

[J44] Spinelli, I., Bianchini, R., & Scardapane, S., Drop Edges and Adapt: a Fairness Enforcing Fine-tuning for Graph Neural Networks, Neural Networks, in press, pp. 1-25, 2023.
Link   DOI   arXiv  

[J43] Maglianella, L., Nicoletti, L., Giagu, S., Napoli, C., & Scardapane, S., Convergent Approaches to AI Explainability for HEP Muonic Particles Pattern Recognition, Computing and Software for Big Science, 428.0, pp. 1-18, 2023.
Link   DOI   Code  

[J42] Marsocci, V., Scardapane, S., Continual Barlow Twins: continual self-supervised learning for remote sensing semantic segmentation, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, pp. 5049-5060, 2023.
Link   DOI   arXiv   Code  

[J41] Scardapane, S., Gallicchio, C., Micheli, A., & Soriano, M.C., Guest Editorial: Trends in Reservoir Computing, Cognitive Computation, 15, pp. 1407-1408, 2023.
Link   DOI  

[J40] Giarnieri, E., & Scardapane, S., Towards Artificial Intelligence Applications in Next Generation Cytopathology, Biomedicines, 11(8), pp. 2225, 2023.
Link   DOI  

[J39] Sai, S., Mittal, U., Chamola, V., Huang, K., Spinelli, I., Scardapane, S., Tan, Z., Hussain, A., Machine Un-learning: An Overview of Techniques, Applications, and Future Directions, Cognitive Computation, Early access, pp. 1-25, 2023.
Link   DOI  

[J38] Asci, F., Scardapane, S., Zampogna, A., D'Onofrio, V., Testa, L., Patera, M., Falletti, M., Marsili, L., & Suppa, A., Handwriting Declines with Human Ageing: A Machine Learning Study, Frontiers in Aging Neuroscience, in press, pp. 1-14, 2022.
Link   DOI  
Press release: Sapienza | Adnkronos | Repubblica | Sky TG24

[J37] Pomponi, J., Scardapane, S., & Uncini, A., Centroids Matching: an efficient Continual Learning approach operating in the embedding space, Transactions on Machine Learning Research, online, pp. 1-15, 2022.
Link   arXiv   Code  

[J36] Spinelli, I., Scardapane, S., Hussain, A., & Uncini, A., FairDrop: Biased Edge Dropout for Enhancing Fairness in Graph Representation Learning, IEEE Transactions on Artificial Intelligence, 3(3), pp. 344-354, 2022.
Link   DOI   arXiv   Code  

[J35] Pomponi, J., Scardapane, S., & Uncini, A., A Probabilistic Re-Intepretation of Confidence Scores in Multi-Exit Models, Entropy, 24(1), pp. 1-14, 2022.
Link   DOI   Code  

[J34] Lastilla, L., Ammirati, S., Firmani, D., Komodakis, N., Merialdo, P., & Scardapane, S., Self-supervised learning for medieval handwriting identification: A case study from the Vatican Apostolic Library, Information Processing & Management, 59(3), pp. 102875, 2022.
Link   DOI  

[J33] Bianchi, F.M., Scardapane, S., Løkse, S., & Jenssen, R., Reservoir computing approaches for representation and classification of multivariate time series, IEEE Transactions on Neural Networks and Learning Systems, 32(5), pp. 2169-237X, 2021.
Link   DOI   arXiv   Code  

[J32] Marsocci, V., Scardapane, S., & Komodakis, N., MARE: Self-Supervised Multi-Attention REsu-Net for Semantic Segmentation in Remote Sensing, Remote Sensing, 13(16), pp. 1-17, 2021.
Link   DOI   Code  

[J31] Lilli, L., Giarnieri, E., & Scardapane, S., A Calibrated Multiexit Neural Network for Detecting Urothelial Cancer Cells, Computational and Mathematical Methods in Medicine, 1-11, pp. 428-437, 2021.
Link   DOI  

[J30] Spinelli, I., Scardapane, S., & Uncini A., Adaptive Propagation Graph Convolutional Network, IEEE Transactions on Neural Networks and Learning Systems, 32(10), pp. 4755-4760, 2021.
Link   DOI   arXiv   Code  

[J29] Scardapane, S., Spinelli, I., & Di Lorenzo, P., Distributed Training of Graph Convolutional Networks, IEEE Transactions on Signal and Information Processing over Networks, 7, pp. 87-100, 2021.
Link   DOI   arXiv  

[J28] Pomponi, J., Scardapane, S., & Uncini, A., Bayesian Neural Networks With Maximum Mean Discrepancy Regularization, Neurocomputing, 453, pp. 428-437, 2021.
Link   DOI   arXiv   Code  

[J27] Pomponi, J., Scardapane, S., & Uncini, A., Structured Ensembles: an Approach to Reduce the Memory Footprint of Ensemble Methods, Neural Networks, In Press, pp. 1-41, 2021.
Link   DOI   arXiv   Code  

[J26] Baccarelli, E., Scardapane, S., Scarpiniti, M., Momenzadeh, A., Uncini, A., Optimized Training and Scalable Implementation of Conditional Deep Neural Networks with Early Exits for Fog-supported IoT applications, Information Sciences, 521, pp. 107-143, 2020.
Link   DOI  

[J25] Spinelli, I., Scardapane, S., & Uncini, A., Missing Data Imputation with Adversarially-trained Graph Convolutional Networks, Neural Networks, 129, pp. 249-260, 2020.
Link   DOI   arXiv   Code  

[J24] Pomponi J., Scardapane S., Lomonaco V., & Uncini A., Efficient Continual Learning in Neural Networks with Embedding Regularization, Neurocomputing, 397, pp. 139-148, 2020.
Link   DOI   arXiv   Code  

[J23] Vecchi, R., Scardapane, S., Comminiello, D., & Uncini, A., Compressing deep quaternion neural networks with targeted regularization, CAAI Transactions on Intelligence Technology, 5(3), pp. 172-176, 2020.
Link   DOI   arXiv  

[J22] Scardapane, S., Van Vaerenbergh, S., Hussain, A., & Uncini, A., Complex-valued Neural Networks with Non-parametric Activation Functions, IEEE Transactions on Emerging Topics in Computational Intelligence, 4(2), pp. 140-150, 2020.
Link   DOI   arXiv  

[J21] Scardapane, S., Scarpiniti, M., Baccarelli, E., & Uncini, A., Why should we add early exits to neural networks?, Cognitive Computation, 12(5), pp. 954-966, 2020.
Link   DOI   arXiv  

[J20] Totaro, S., Hussain, A., & Scardapane, S., A Non-parametric Softmax for Improving Neural Attention in Time-Series Forecasting, Neurocomputing, 381, pp. 177-185, 2020.
Link   DOI  

[J19] Scardapane, S., Van Vaerenbergh, S., & Uncini, A., Kafnets: kernel-based non-parametric activation functions for neural networks, Neural Networks, 110, pp. 4947-4956, 2019.
Link   DOI   arXiv   Code  

[J18] Scardapane, S., & Di Lorenzo, P., Stochastic Training of Neural Networks via Successive Convex Approximations, IEEE Transactions on Neural Networks and Learning Systems, 29(10), pp. 4947-4956, 2018.
Link   DOI   arXiv   Code  

[J17] Scardapane, S., Wang, D. & Uncini, A., Bayesian Random Vector Functional-Link Networks for Robust Data Modeling, IEEE Transactions on Cybernetics, 48(7), pp. 2049-2059, 2018.
Link   DOI   arXiv   Code  

[J16] Scardapane, S. & Wang, D., Randomness in neural networks: an overview, WIREs Data Mining and Knowledge Discovery, 7(2), pp. 1-18, 2017.
Link   DOI  

[J15] Scardapane, S., Comminiello, D., Hussain, A. & Uncini, A., Group Sparse Regularization for Deep Neural Networks, Neurocomputing, 241, pp. 81-89, 2017.
Link   DOI   arXiv   Code  

[J14] Fierimonte, R., Scardapane, S., Uncini, A. & Panella, M., Fully Decentralized Semi-supervised Learning via Privacy-preserving Matrix Completion, IEEE Transactions on Neural Networks and Learning Systems, 28(11), pp. 2699-2711, 2017.
Link   DOI   Code  

[J13] Scardapane, S. & Di Lorenzo, P., A Framework for Parallel and Distributed Training of Neural Networks, Neural Networks, 91, pp. 42-54, 2017.
Link   DOI   arXiv   Code  

[J12] Scardapane, S., Butcher, J., Bianchi, F.M., & Malik, Z., Advances in Biologically Inspired Reservoir Computing [Guest Editorial], Cognitive Computation, 9(3), pp. 295-296, 2017.
Link   DOI  

[J11] Scardapane, S., Panella, M., Comminiello, D., Hussain, A. & Uncini, A., Distributed reservoir computing with sparse readouts, IEEE Computational Intelligence Magazine, 11(4), pp. 59-70, 2016.
Link   DOI   Code  

[J10] Bianchi, F.M., Scardapane, S., Rizzi, A., Uncini, A., & Sadeghian, A., Granular Computing Techniques for Classification and Semantic Characterization of Structured Data, Cognitive Computation, 8(3), pp. 442-461, 2016.
Link   DOI  

[J9] Scardapane, S., Fierimonte, R, Di Lorenzo, P., Panella, M. & Uncini, A., Distributed semi-supervised support vector machines, Neural Networks, 80, pp. 43-52, 2016.
Link   DOI   Code  

[J8] Scardapane, S., Wang, D., & Panella, M., A decentralized training algorithm for Echo State Networks in distributed big data applications, Neural Networks, 78, pp. 65-74, 2016.
Link   DOI   Code  

[J7] Scardapane, S. & Uncini, A., Semi-supervised Echo State Networks for Audio Classification, Cognitive Computation, 9(1), pp. 125-135, 2016.
Link   DOI  

[J6] Scardapane, S., Comminiello, D., Scarpiniti, M., & Uncini, A., A Semi-supervised Random Vector Functional-Link Network based on the Transductive Framework, Information Sciences, 364-365, pp. 156–166, 2016.
Link   DOI  

[J5] Comminiello, D., Scarpiniti, M., Scardapane, S., Parisi, R. & Uncini, A., Improving nonlinear modeling capabilities of functional link adaptive filters, Neural Networks, 69, pp. 51-59, 2015.
Link   DOI  

[J4] Bianchi, F. M., Scardapane, S., Uncini, A., Rizzi, A., Sadeghian, A., Prediction of telephone calls load using Echo State Network with exogenous variables, Neural Networks, 71, pp. 204-213, 2015.
Link   DOI  

[J3] Scardapane, S., Comminiello, D., Scarpiniti, M. & Uncini, A., Online Sequential Extreme Learning Machine With Kernels, IEEE Transactions on Neural Networks and Learning Systems, 26(9), pp. 2214-2200, 2015.
Link   DOI  

[J2] Scardapane, S., Scarpiniti, M., Bucciarelli, M., Colone, F., Mansueto, M. V., & Parisi, R., Microphone Array Based Classification for Security Monitoring in Unstructured Environments, AEU-International Journal of Electronics and Communications, 69(11), pp. 1715-1723, 2015.
Link   DOI  

[J1] Scardapane, S., Wang, D., Panella, M. & Uncini, A., Distributed Learning for Random Vector Functional-Link Networks, Information Sciences, 301, pp. 217-284, 2015.
Link   DOI  

📅 Conference publications

[C53] Potì, A., Marsocci, V., Nicolosi, A., Scardapane, S., Assessing the Adaptability of Self-Supervised Learning Methods for Small-Scale Hyperspectral Imaging, 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 8991-8994, 2024 (IEEE).
Link  

[C52] Papamarkou, T., et al., Position: Topological Deep Learning is the New Frontier for Relational Learning, International Conference on Machine Learning, pp. 1-27, 2024 (ICML).
Link   arXiv  

[C51] Battiloro, C., Spinelli, I., Telyatnikov, L., Bronstein, M., Scardapane, S., Di Lorenzo, P., From Latent Graph to Latent Topology Inference: Differentiable Cell Complex Module, International Conference on Learning Representations, pp. 1-22, 2024 (ICLR).
Link   arXiv  

[C50] Strinati, E.C., et al., Goal-Oriented and Semantic Communication in 6G AI-Native Networks: The 6G-GOALS Approach, EuCNC & 6G Summit, pp. 1-6, 2024 (EUCNC).
Link   arXiv  

[C49] Szatkowski, F., Wójcik, B., Piórczyński, M., Scardapane, S., Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion, Advances in Neural Information Processing Systems, pp. 1-11, 2024 (NeurIPS).
Link   arXiv  

[C48] Szatkowski, F., Wójcik, B., Piórczyński, M., Scardapane, S., Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion, Efficient Systems for Foundation Models Workshop @ ICML, pp. 1-11, 2024 (ICML).
Link   arXiv  

[C47] Contu, R., Marsocci, V., Coletta, V., Ravanelli, R., Scardapane, S., Urban 3D Change Detection with Deep Learning: Custom Data Augmentation Techniques, EGU General Assembly 2024, pp. 1, 2024 (Copernicus Meetings). Extended abstract No. EGU24-9729.
Link  

[C46] Devoto, A., Zhao, Y., Scardapane, S., and Minervini, P., A Simple and Effective L2 Norm-Based Strategy for KV Cache Compression, Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 18476–18499, 2024 (ACL).
Link   arXiv  

[C45] Guerra, M., Spinelli, I., Scardapane, S., & Bianchi F.M., Explainability in subgraphs-enhanced Graph Neural Networks, Proceedings of the Northern Lights Deep Learning Workshop 2023, pp. 1-7, 2023 (Septentrio Academic Publishing).
Link   arXiv   Code  

[C44] Telyatnikov, L., & Scardapane, S., EGG-GAE: scalable graph neural networks for tabular data imputation, Proceedings of The 26th International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1-16, 2023 (PMLR 206:2661-2676).
Link   arXiv   Code  

[C43] Moieez, H., Marsocci, V., Scardapane, S., Continual Self-Supervised Learning in Earth Observation with Embedding Regularization, 2023 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5029-5032, 2023 (IEEE).
Link  

[C42] Spinelli, I., Guerra, M., Bianchi F.M., Scardapane, S., Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability, 2023 European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 229-234, 2023 (ESANN).
Link   arXiv  

[C41] Marsocci, V., Coletta, V., Ravanelli, R., Scardapane, S., & Crespi, M., New trends in urban change detection: detecting 3D changes from bitemporal optical images, EGU General Assembly 2023, pp. 1, 2023 (Copernicus Meetings). Extended abstract No. EGU23-13357.
Link  

[C40] Torda, T., Gargiulo, S., Grillo, G., Ciardiello, A., Voena, C., Giagu, S., and Scardapane, S., Tracin in Semantic Segmentation of Tumor Brains in MRI, an Extended Approach, Proceedings of the 2nd AIxIA Workshop on Artificial Intelligence For Healthcare (AI*CH), pp. 1-10, 2023 (CEUR Workshop Proceedings).
Link  

[C39] Papillon, M., et al., ICML 2023 Topological Deep Learning Challenge : Design and Results, Proceedings of 2nd Annual Workshop on Topology, Algebra, and Geometry in Machine Learning (TAG-ML), pp. 3-8, 2023 (PMLR 221).
Link   arXiv  

[C38] Marsocci, V., Gonthier, N., Garioud, A., Scardapane, S., Mallet, C., GeoMultiTaskNet: remote sensing unsupervised domain adaptation using geographical coordinates, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2075-2085, 2023 (IEEE/CVF).
Link   arXiv  

[C37] Pomponi, J., Scardapane, S., & Uncini, A., Pixle: a fast and effective black-box attack based on rearranging pixels, 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1-7, 2022 (IEEE).
Link   arXiv   Code  

[C36] Verdone, A., Scardapane, S., & Panella, M., Multi-site Forecasting of Energy Time Series with Spatio-Temporal Graph Neural Networks, 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1-8, 2022 (IEEE).
Link  

[C35] Spasiano, F., Gennaro, G., & Scardapane, S., Evaluating Adversarial Attacks and Defences in Infrared Deep Learning Monitoring Systems, 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1-6, 2022 (IEEE).
Link  

[C34] Farkhondeh, A., Palmero, C., Scardapane, S., & Escalera, S., Towards Self-Supervised Gaze Estimation, 2022 British Machine Vision Conference (BMVC), pp. 1-13, 2022 (The British Machine Vision Association and Society for Pattern Recognition).
Link   arXiv  

[C33] Vincenzo, V., Pellegrini, L., Cossu, A., Carta, A., Graffieti, G., Hayes, T.L., De Lange, M., Masana, M., Pomponi, J., van de Ven, G., Mundt, M., She, Q., Cooper, K., Forest, J., Belouadah, E., Calderara, S., Parisi, G.I., Cuzzolin, F., Tolias, A., Scardapane, S., Antiga, L., Amhad, S., Popescu, A., Kanan, C., van de Weijer, J., Tuytelaars, T., Bacciu, D., & Maltoni, D., Avalanche: an End-to-End Library for Continual Learning, Continual Learning in Computer Vision Workshop, CVPR 2021, pp. 1-11, 2021 (CVPR).
Link   arXiv   Code  

[C32] Falvo, A., Comminiello, D., Scardapane, S., Scarpiniti, M., & Uncini, A., A Wide Multimodal Dense U-Net for Fast Magnetic Resonance Imaging, Proceedings of the 20120 28th European Signal Processing Conference (EUSIPCO), pp. 1274-1278, 2020 (IEEE).
Link  

[C31] Iurcev, M., Diviacco, P., Scardapane, S., & Muciaccia, F., Recognition of marine seismic data features using convolutional neural networks, EGU General Assembly 2020, pp. 1, 2020 (EGU).
Link   DOI  

[C30] Celsi, M. R., Scardapane, S., & Comminiello, D., Quaternion Neural Networks for 3D Sound Source Localization in Reverberant Environments, Proceedings of the 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1-6, 2020 (IEEE).
Link  

[C29] Pomponi, J., Scardapane, S., & Uncini, A., Pseudo-Rehearsal for Continual Learning with Normalizing Flows, 4th Lifelong Learning Workshop, Thirty-seventh International Conference on Machine Learning, pp. 1-5, 2020 (ICML).
Link  

[C28] Gallicchio, C., Lukoševičius‬, M., & Scardapane, S., Frontiers in Reservoir Computing, Proceedings of the 2020 European Symposium on Artificial Neural Networks (ESANN), pp. 559-566, 2020 (ESANN).
Link  

[C27] Scardapane, S., Comminiello, D., Scarpiniti, M., Baccarelli, E., & Uncini, A., Differentiable Branching In Deep Networks for Fast Inference, 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1-5, 2020 (IEEE).
Link  

[C26] Di Lorenzo, P., & Scardapane, S., Distributed Stochastic Nonconvex Optimization and Learning based on Successive Convex Approximation, Proceedings of the 2019 Asilomar Conference on Signals, Systems, and Computers, pp. 1-5, 2020 (IEEE).
Link   DOI   arXiv  

[C25] Scardapane, S., Van Vaerenbergh, S., Comminiello, D., & Uncini, A., Widely Linear Kernels for Complex-Valued Kernel Activation Functions, Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1-5, 2019 (IEEE).
Link   arXiv  

[C24] Comminiello, D., Lella, M., Scardapane, S., & Uncini, A., Quaternion Convolutional Neural Networks for Detection and Localization of 3D Sound Events, 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1-5, 2019 (IEEE).
Link   DOI   arXiv  

[C23] Falvo, A., Comminiello, D., Scardapane, S., Scarpiniti, M., & Uncini, A., A Multimodal Dense U-Net For Accelerating Multiple Sclerosis MRI, Proceedings of the 2019 IEEE Machine Learning for Signal Processing Workshop (MLSP), pp. 1-6, 2019 (IEEE).
Link   DOI  

[C22] Comminiello, D., Scarpiniti, M., Scardapane, S., Azpicueta-Ruiz, L. A., & Uncini, A., Combined Sparse Regularization for Nonlinear Adaptive Filters, Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), pp. 336-340, 2018 (IEEE).
Link   DOI  

[C21] Bianchi, F. M., Scardapane, S., Løkse, S., & Jenssen, R., Bidirectional deep-readout echo state networks, Proceedings of the 2018 European Symposium on Artificial Neural Networks (ESANN), pp. 425-430, 2018 (ESANN).
Link   arXiv   Code  

[C20] Scardapane, S., Van Vaerenbergh, S., Comminiello, D., & Uncini, A., Improving Graph Convolutional Networks with Non-Parametric Activation Functions, Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), pp. 872-876, 2018 (IEEE).
Link   DOI   arXiv  

[C19] Comminiello, D., Scarpiniti, M, Scardapane, S., & Uncini, A., Sparse Functional Link Adaptive Filter Using an ℓ1-Norm Regularization, Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-5, 2018 (IEEE).
Link  

[C18] Scardapane, S., Van Vaerenbergh, S., Comminiello, D., Totaro, S., & Uncini, A., Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions, Proceedings of the 2018 IEEE Machine Learning for Signal Processing Workshop (MLSP), pp. 1-6, 2018 (IEEE).
Link   DOI   arXiv  

[C17] Scardapane, S., Stoffl, L., Röhrbein, F. & Uncini, A., On the Use of Deep Recurrent Neural Networks for Detecting Audio Spoofing Attacks, 2017 International Joint Conference on Neural Networks (IJCNN), pp. 3483-3490, 2017 (IEEE).
Link  

[C16] Van Vaerenbergh, S., Scardapane, S., & Santamaria, I., Recursive Multikernel Filters Exploiting Nonlinear Temporal Structure, 2017 25th European Signal Processing Conference (EUSIPCO), pp. 2743-2747, 2017 (Eurasip).
Link   DOI   arXiv  

[C15] Firmani, D., Merialdo, P., Nieddu, E., & Scardapane, S., In Codice Ratio: OCR of Handwritten Latin Documents using Deep Convolutional Networks, Proceedings of the 11th International Workshop on Artificial Intelligence for Cultural Heritage (AI*CH), pp. 9-16, 2017 (CEUR Workshop Proceedings).
Link  

[C14] Di Lorenzo, P. & Scardapane, S., Parallel and Distributed Training of Neural Networks via Successive Convex Approximation, 2016 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1-6, 2016 (IEEE).
Link   DOI   Code  

[C13] Scardapane, S., Scarpiniti, M., Comminiello, D. & Uncini, A., Diffusion Spline Adaptive Filtering, 2016 24th European Signal Processing Conference (EUSIPCO), pp. 1498-1502, 2016 (Eurasip).
Link   Code  

[C12] Scardapane, S., Altilio, R., Panella, M. & Uncini, A., Distributed Spectral Clustering based on Euclidean Distance Matrix Completion, 2016 International Joint Conference on Neural Networks (IJCNN), pp. 3093-3100, 2016 (IEEE).
Link   DOI  

[C11] Scardapane, S., Panella, M., Comminiello, D., & Uncini, A., Learning from Distributed Data Sources Using Random Vector Functional-Link Networks, Procedia Computer Science, pp. 53, 468-477, 2015 (Elsevier).
Link   DOI  

[C10] Comminiello D., Scardapane, S., Scarpiniti, M., Parisi, R. & Uncini, A., Functional Link Expansions for Nonlinear Modeling of Audio and Speech Signals, 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1-8, 2015 (IEEE).
Link   DOI  

[C9] Scardapane, S., Fierimonte, R., Wang, D., Panella, M. & Uncini, A., Distributed Music Classification Using Random Vector Functional-Link Nets, 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1-8, 2015 (IEEE).
Link  

[C8] Bianchi, F. M., Scardapane, S., Livi, L., Uncini, A., & Rizzi, A., An interpretable graph-based image classifier, 2014 International Joint Conference on Neural Networks (IJCNN), pp. 2339-2346, 2014 (IEEE).
Link   DOI  

[C7] Scardapane, S., Comminiello, D., Scarpiniti, M., & Uncini, A., GP-based kernel evolution for L2-Regularization Networks, 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1674-1681, 2014 (IEEE).
Link  

[C6] Scardapane, S., Nocco, G., Comminiello, D., Scarpiniti, M., & Uncini, A., An effective criterion for pruning reservoir’s connections in Echo State Networks, 2014 International Joint Conference on Neural Networks (IJCNN), pp. 1205-1212, 2014 (IEEE).
Link   DOI  

[C5] Comminiello, D., Scardapane, S., Scarpiniti, M., & Uncini, A., User-Driven Quality Enhancement for Audio Signal Processing, Audio Engineering Society Convention 134, pp. , 2013 (Audio Engineering Sociery).
Link   Code  

[C4] Scardapane, S., Comminiello, D., Scarpiniti, M., & Uncini, A., Music classification using extreme learning machines, 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 377-381, 2013 (IEEE).
Link   DOI  

[C3] Comminiello, D., Scardapane, S., Scarpiniti, M., & Uncini, A., Interactive quality enhancement in acoustic echo cancellation, 2013 36th International Conference on Telecommunications and Signal Processing (TSP), pp. 488-492, 2013 (IEEE).
Link   DOI   Code  

[C2] Alemanno, A., Travaglini, A., Scardapane, S., Comminiello, D., & Uncini, A., A Framework for Adaptive Real-Time Loudness Control, Audio Engineering Society Convention 134, pp. , 2013 (Audio Engineering Sociery).
Link  

[C1] Comminiello, D., Scardapane, S., Scarpiniti, M., Parisi, R., & Uncini, A., Convex combination of MIMO filters for multichannel acoustic echo cancellation, 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 778-782, 2013 (IEEE).
Link   DOI  

📚 Book publications

[B23] Carraro, A., Saurio, G., López-Maestresalas, A., Scardapane, S., Marinello, F., Convolutional Neural Networks for the Detection of Esca Disease Complex in Asymptomatic Grapevine Leaves, Image Analysis and Processing - ICIAP 2023 Workshops, pp. 1-10, 2023 (Lecture Notes in Computer Science, vol 14365. Springer, Cham).
Link   DOI  

[B22] Saurio, G., Muscas, M., Spinelli, I., Rughetti, V., Della Giovampaola, I., Scardapane, S., ArcheoWeedNet: Weed Classification in the Parco archeologico del Colosseo, Image Analysis and Processing - ICIAP 2023 Workshops, pp. 1-10, 2023 (Lecture Notes in Computer Science, vol 14365. Springer, Cham).
Link   DOI  

[B21] Copur, O., Nakip, M., Scardapane, S., & Slowack Jürgen, Engagement Detection with Multi-Task Training in E-Learning Environments, Image Analysis and Processing – ICIAP 2022, pp. 411-422, 2022 (Springer).
Link   DOI   arXiv   Code  

[B20] Scarpiniti, M., Scardapane, S., Comminiello, S., & Uncini A., Music Genre Classification Using Stacked Auto-Encoders, Neural Approaches to Dynamics of Signal Exchanges, pp. 11-19, 2020 (Springer).
Link   DOI  

[B19] Falvo A., Comminiello D., Scardapane S., Finesi G., Scarpiniti M., & Uncini A., A Multimodal Deep Network for the Reconstruction of T2W MR Images, Progresses in Artificial Intelligence and Neural Systems, pp. 423-431, 2020 (Springer).
Link   DOI   arXiv  

[B18] Grassucci, E., Scardapane S., Comminiello, D., & Uncini A., Flexible Generative Adversarial Networks with Non-parametric Activation Functions, Progresses in Artificial Intelligence and Neural Systems, pp. 67-77, 2020 (Springer).
Link   DOI   arXiv  

[B17] Spinelli, I., Scardapane, S., Scarpiniti, M., & Uncini, A., Efficient data augmentation using graph imputation neural networks, Progresses in Artificial Intelligence and Neural Systems, pp. 43-68, 2020 (Springer).
Link   DOI   arXiv  

[B16] Gallicchio, C., & Scardapane, S., Deep randomized neural networks, Recent Trends in Learning From Data, pp. 43-68, 2020 (Springer).
Link   DOI   arXiv  

[B15] Scarpiniti, M., Scardapane, S., Comminiello, D., Parisi, R. & Uncini, A., Separation of Drum and Bass from Monaural Tracks, Neural Advances in Processing Nonlinear Dynamic Signals, pp. 141-151, 2019 (Springer).
Link   DOI  

[B14] Scardapane, S., Nieddu, E., Firmani, D., & Merialdo, P., Multikernel activation functions: formulation and a case study, INNSBDDL 2019: Recent Advances in Big Data and Deep Learning, pp. 320-329, 2019 (Springer).
Link   DOI   arXiv  

[B13] Comminiello, D., Scarpiniti, M., Scardapane, S., Parisi, R. & Uncini, A., A Low-Complexity Linear-in-the-Parameters Nonlinear Filter for Distorted Speech Signals, Neural Advances in Processing Nonlinear Dynamic Signals, pp. 107-117, 2019 (Springer).
Link   DOI  

[B12] Scardapane, S., Scarpiniti, M., Comminiello, D. & Uncini, A., Learning activation functions from data using cubic spline interpolation, Neural Advances in Processing Nonlinear Dynamic Signals, pp. 73-83, 2019 (Springer).
Link   DOI   arXiv   Code  

[B11] Scardapane, S., Chen, J., & Richard, C., Adaptation and learning over networks for nonlinear system modeling, Adaptive Learning Methods for Nonlinear System Modeling, pp. 223-242, 2018 (Elsevier).
Link   DOI   arXiv  

[B10] Scardapane, S., Altilio, R., Ciccarelli, V., Uncini, A. & Panella, M., Privacy-Preserving Data Mining for Distributed Medical Scenarios, Multidisciplinary Approaches to Neural Computing, pp. 119-128, 2017 (Springer).
Link   DOI  

[B9] Scarpiniti, M., Scardapane, S., Comminiello, D., Parisi, R. & Uncini, A., Effective Blind Source Separation Based on the Adam Algorithm, Multidisciplinary Approaches to Neural Computing, pp. 57-66, 2017 (Springer).
Link   DOI   arXiv  

[B8] Comminiello, D., Scarpiniti, M., Scardapane, S., Parisi, R., & Uncini, A., A Nonlinear Acoustic Echo Canceller with Improved Tracking Capabilities, Recent Advances in Nonlinear Speech Processing, pp. 235-243, 2016 (Springer).
Link   DOI  

[B7] Fierimonte, R., Scardapane, S., Panella, M., & Uncini, A., A Comparison of Consensus Strategies for Distributed Learning of Random Vector Functional-Link Networks, Advances in Neural Networks: Computational Intelligence and ICT, pp. 143-152, 2016 (Springer).
Link   DOI  

[B6] Scardapane, S., Danilo, C., Scarpiniti, M., Parisi, R. & Uncini, A., Benchmarking Functional Link Expansions for Audio Classification Tasks, Advances in Neural Networks: Computational Intelligence and ICT, pp. 133-141, 2016 (Springer).
Link   DOI  

[B5] Scardapane, S., Comminiello, D., Scarpiniti, M., & Uncini, A., Significance-Based Pruning for Reservoir’s Neurons in Echo State Networks, Advances in Neural Networks: Computational and Theoretical Issues, pp. 31-38, 2015 (Springer).
Link   DOI  

[B4] Comminiello, D., Scardapane, S., Scarpiniti, M., Parisi, R. & Uncini, A., Online Selection of Functional Links for Nonlinear System Identification, Advances in Neural Networks: Computational and Theoretical Issues, pp. 39-47, 2015 (Springer).
Link   DOI  

[B3] Scarpiniti, M., Comminiello, D., Scardapane, S., Parisi, R., & Uncini, A., Proportionate Algorithms for Blind Source Separation, Recent Advances of Neural Network Models and Applications, pp. 99-106, 2014 (Springer).
Link   DOI  

[B2] Scardapane, S., Comminiello, D., Scarpiniti, M., & Uncini, A., A Preliminary Study on Transductive Extreme Learning Machines, Recent Advances of Neural Network Models and Applications, pp. 25-32, 2014 (Springer).
Link   DOI  

[B1] Scardapane, S., Comminiello, D., Scarpiniti, M., Parisi, R., & Uncini, PM10 Forecasting Using Kernel Adaptive Filtering: An Italian Case Study, Neural Nets and Surroundings, pp. 93-100, 2013 (Springer).
Link   DOI